Skip to main content
Log in

Growth of High-Density Self-Aligned Carbon Nanotubes and Nanofibers Using Palladium Catalyst

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper we demonstrate vertical self-aligned growth of carbon nanotubes (CNT) and carbon nanofibers (CNF) using 1 nm of Pd as the catalyst material. Results were compared with those obtained using traditional catalysts (Co, Fe, and Ni). Pd is of interest as it has been demonstrated to be an excellent material for electrical contact to nanotubes. CNT were grown using plasma-enhanced chemical vapor deposition (PECVD) at 450°C to 500°C and using atmospheric-pressure chemical vapor deposition (APCVD) between 450°C and 640°C. The results were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. High-density (1011 cm−2 to 1012 cm−2) self-aligned CNT growth was obtained using APCVD and Pd as the catalyst, while Co and Fe resulted in random growth. TEM revealed that the CNT grown by Pd with PECVD form large bundles of tubes, while Ni forms large-diameter CNF. It was found that the CNT grown using Pd or Ni are of low quality compared with those grown by Co and Fe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.-H. Tsai, C.-T. Shiu, S.-H. Lai, and H.C. Shih, Carbon 40, 1597 (2002).

    Article  CAS  Google Scholar 

  2. R. Vajtai, K. Kordás, B.Q. Wei, J. Békési, S. Leppävuori, T.F. George, and P.M. Ajayan, Mater. Sci. Eng. C 19, 271 (2002).

    Article  Google Scholar 

  3. Y.M. Wong, S. Wei, W.P. Kang, J.L. Davidson, W. Hofmeister, J.H. Huang, and Y. Cui, Diam. Relat. Mater. 13, 2105 (2004).

    Article  CAS  Google Scholar 

  4. Y. Breton, M. Verstraete, R. Fleurier, T. Cacciaguerra, J.-C. Charlier, A.-L. Thomann, and J.-P. Salvetat, Carbon 42, 1049 (2004).

    Article  CAS  Google Scholar 

  5. S.-Y. Lee, M. Yamada, and M. Miyake, Sci. Technol. Adv. Mater. 6, 420 (2005).

    Article  CAS  Google Scholar 

  6. Y. Ominami, Q. Ngo, A.J. Austin, H. Yoong, C.Y. Yang, A.M. Cassell, B.A. Cruden, J. Li, and M. Meyyappan, Appl. Phys. Lett. 87, 233105 (2005).

    Article  ADS  Google Scholar 

  7. X. Tao, X. Zhang, J. Wang, J. Cheng, F. Liu, J. Luo, and Z. Luo, IEEE NEMS ‘06, 559 (2006).

  8. Q. Ngo, A.M. Cassell, V. Radmilovic, J. Li, S. Krishnan, M. Meyyappan, and C.Y. Yang, Carbon 45, 424 (2007).

    Article  CAS  Google Scholar 

  9. A. Naeemi and J.D. Meindl, Carbon Nanotube Electronics (New York: Series on Integrated Circuits and Systems, Springer Science, 2009), pp. 163–190.

  10. P. Tarakeshwar, J.J. Palacios, and D.M. Kim, IEEE Trans. Nanotechnol. 7, 124 (2008).

    Article  ADS  Google Scholar 

  11. A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, Nature 424, 654 (2003).

    Article  CAS  PubMed  ADS  Google Scholar 

  12. G.F. Close and H.-S.P. Wong, Int. El. Devices Meet. 2007 (2007), p. 203.

  13. Y. Zhang, T. Ichihashi, E. Landree, F. Nihey, and S. Iijima, Science 285, 1719 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. L. Zhu, Y. Sun, J. Xu, Z. Zhang, D.W. Hess, and C.P. Wong, P. Electr. C. 55, 44 (2005).

    Google Scholar 

  15. S. Vollebregt, J. Derakhshandeh, R. Ishihara, and C.I.M. Beenakker, 51st TMS Electronics Materials Conference (PA: State College, 2009).

  16. M. Chhowalla, K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga, A.C. Ferrari, D. Roy, J. Robertson, and W.I. Milne, J. Appl. Phys. 90, 5308 (2001).

    Article  CAS  ADS  Google Scholar 

  17. S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, and H. Dai, Science 283, 283 (1999).

    Article  Google Scholar 

  18. M.S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Phys. Rep. 409, 47 (2005).

    Article  ADS  Google Scholar 

  19. E.F. Antunes, A.O. Lobo, E.J. Corat, and V.J. Trava-Airoldi, Carbon 45, 913 (2007).

    Article  CAS  Google Scholar 

  20. W. Li, H. Zhang, C. Wang, Y. Zhang, L. Xu, K. Zhu, and S. Xie, Appl. Phys. Lett. 70, 2684 (1997).

    Article  CAS  ADS  Google Scholar 

  21. Y.T. Lee, J. Park, Y.S. Choi, H. Ryu, and H.J. Lee, J. Phys. Chem. B 106, 7614 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors want to thank STW for funding the project and Dr. Kenneth Teo at AIXTRON for support with the CNT growth. Furthermore, we thank Marco van der Krogt of the Kavli Institute of Nanoscience for the deposition of the metals using e-beam evaporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vollebregt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vollebregt, S., Derakhshandeh, J., Ishihara, R. et al. Growth of High-Density Self-Aligned Carbon Nanotubes and Nanofibers Using Palladium Catalyst. J. Electron. Mater. 39, 371–375 (2010). https://doi.org/10.1007/s11664-010-1094-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1094-7

Keywords

Navigation