Skip to main content
Log in

Feasibility of Localized Substrate Thinning for Reduced Dislocation Density in CdTe/Si Heterostructures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

HgCdTe heteroepitaxy on low-cost, large-lattice-mismatched substrates such as Si continue to be plagued by large threading dislocation densities that ultimately reduce the operability of the thermal imaging detector array. Molecular-beam epitaxy (MBE) of 10 μm- to 15 μm-thick CdTe buffer layers has played a crucial role in reducing dislocation densities to current state-of-the-art levels. Herein, we examine the possibility that growth on locally back-thinned substrates could prove advantageous in further reducing dislocation densities in the CdTe/Si heteroepitaxial system. Using defect decoration techniques, a decrease in dislocation (etch-pit) density of up to ~42% has been measured in CdTe regions where the underlying Si substrate was chemically back-thinned to ~20 μm. A theoretical understanding is proposed, where a substrate-thickness-dependent dislocation image force is a likely cause for the experimentally observed reduction in threading dislocation density. These observations raise the prospect of combining localized substrate thinning with other techniques to further reduce dislocation densities to levels sought for HgCdTe/CdTe/Si and other large-lattice-mismatched systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Sporken, S. Sivananthan, K.K. Mahavadi, G. Monfroy, M. Boukerche, and J.P. Faurie, Appl. Phys. Lett. 55, 1879 (1989).

    Article  CAS  ADS  Google Scholar 

  2. M. Carmody, J.G. Pasko, D. Edwall, R. Bailey, J. Arias, M. Groenert, L.A. Almeida, J.H. Dinan, Y. Chen, G. Brill, and N.K. Dhar, J. Electron. Mater. 35, 1417 (2006).

    Article  CAS  ADS  Google Scholar 

  3. N.K. Dhar, P.R. Boyd, M. Martinka, J.H. Dinan, L.A. Almeida, and N. Goldsman, J. Electron. Mater. 29, 748 (2000).

    Article  CAS  ADS  Google Scholar 

  4. L.A. Almeida, L. Hirsch, M. Martinka, P.R. Boyd, and J.H. Dinan, J. Electron. Mater. 30, 608 (2001).

    Article  CAS  ADS  Google Scholar 

  5. S.M. Johnson, D.R. Rhiger, J.P. Rosenbeck, J.M. Peterson, S.M. Taylor, and M.E. Boyd, J. Vac. Sci. Technol. B10, 1499 (1992).

    Google Scholar 

  6. R.N. Jacobs, J. Markunas, J. Pellegrino, L.A. Almeida, M. Groenert, M. Jaime-Vasquez, N. Mahadik, C. Andrews, and S.B. Qadri, J. Cryst. Growth 310, 2960 (2008).

    Article  CAS  ADS  Google Scholar 

  7. P. Wijewarnasuriya, Y. Chen, G. Brill, N. Dhar, D. Benson, L. Bubulac, and D. Edwall, J. Electron. Mater. (in this issue).

  8. L.O. Bubulac, J.D. Benson, R. Helmer, T.D. Golding, A. Wang, L. Wang, A. Stoltz, R.N. Jacobs, and M. Jaime-Vasquez, J. Electron. Mater. (in this issue).

  9. M. Jaime-Vasquez, R.N. Jacobs, J.D. Benson, A.J. Stoltz, L.A. Almeida, L.O. Bubulac, Y. Chen, and G. Brill, J. Electron. Mater. (in this issue).

  10. L.O. Bubulac, J.D. Benson, A. Wang, L. Wang, R.N. Jacobs, R. Helmer, M. Jaime-Vasquez, L.A. Almeida, T.D. Golding, and A. Stoltz, J. Electron. Mater. (in this issue).

  11. J.D. Benson, L.O. Bubulac, P.J. Smith, R.N. Jacobs, J.K. Markunas, M. Jaime-Vasquez, L.A. Almeida, A. Stoltz, P.S. Wijewarnasuriya, G. Brill, Y. Chen, U. Lee, M.F. Villa, J. Peterson, S.M. Johnson, D.D. Lofgren, D. Rhiger, E.A. Patten, and P.M. Goetz. J. Electron. Mater. (in this issue).

  12. Y. Chen, S. Farrell, G. Brill, P. Wijewarnasuriya, and N. Dhar, J. Cryst. Growth 310, 5303 (2008).

    Article  CAS  ADS  Google Scholar 

  13. J.D. Benson, R.N. Jacobs, J.K. Markunas, M. Jaime- Vasquez, P.J. Smith, L.A. Almeida, M. Martinka, M.F. Vilela, and U. Lee, J. Electron. Mater. 37, 1231 (2008).

    Article  CAS  ADS  Google Scholar 

  14. R. Zhang and I. Bhat, J. Electron. Mater. 29, 760 (2000).

    Article  ADS  Google Scholar 

  15. T.D. Golding, O.W. Holland, M.J. Kim, J.H. Dinan, L.A. Almeida, J.M. Arias, J. Bajaj, H.D. Shih, and W.P. Kirk, J. Electron. Mater. 32, 882 (2003).

    Article  CAS  ADS  Google Scholar 

  16. J. Molstad, P. Boyd, J. Markunas, D.J. Smith, E. Smith, E. Gordon, and J.H. Dinan, J. Electron. Mater. 35, 1636 (2006).

    Article  CAS  ADS  Google Scholar 

  17. Y.H. Lo, Appl. Phys. Lett. 59, 2311 (1991).

    Article  CAS  ADS  Google Scholar 

  18. L.B. Freund and W.D. Nix, Appl. Phys. Lett. 69, 173 (1996).

    Article  ADS  Google Scholar 

  19. UltraThin® is a registered trademark. Virginia Semiconductor Inc. owns all the rights to use the UltraThin® trademark as related to silicon wafers and chips.

  20. J.P. Mcaffrey, B.T. Sullivan, J.W. Fraser, and D.L. Callahan, Micron 27, 407 (1996).

    Article  Google Scholar 

  21. W.J. Everson, C.K. Ard, J.L. Sepich, B.E. Dean, G.T. Neugebauer, and H.F. Shaake, J. Electron. Mater. 24, 505 (1995).

    Article  CAS  ADS  Google Scholar 

  22. J.D. Benson, P.J. Smith, R.N. Jacobs, J.K. Markunas, M. Jaime-Vasquez, L.A. Almeida, M. Martinka, L.O. Bubulac, M. Greonert, P. Wijewarnasuriya, G. Brill, Y. Chen, and U. Lee, J. Electron. Mater. 38, 1771 (2009).

    Article  CAS  ADS  Google Scholar 

  23. J.S. Speck, M.A. Brewer, G. Beltz, A.E. Romanov, and W. Pompe, J. Appl. Phys. 80, 3808 (1996).

    Article  CAS  ADS  Google Scholar 

  24. I.V. Kurilo, V.P. Alekhin, I.O. Rudyi, S.I. Bulychev, and L.I. Osypyshin, Phys. Status Solidi A 163, 47 (1997).

    Article  CAS  ADS  Google Scholar 

  25. W.A. Brantley, J. Appl. Phys. 44, 534 (1973).

    Article  CAS  ADS  Google Scholar 

  26. J. Weertman and J.R. Weertman, Elementary Dislocation Theory (Oxford University Press, 1992), pp. 170–173.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Jacobs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, R.N., Smith, P.J., Markunas, J.K. et al. Feasibility of Localized Substrate Thinning for Reduced Dislocation Density in CdTe/Si Heterostructures. J. Electron. Mater. 39, 1036–1042 (2010). https://doi.org/10.1007/s11664-010-1085-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1085-8

Keywords

Navigation