Skip to main content
Log in

Thermoelectric Properties as a Function of Electronic Band Structure and Microstructure of Textured Materials

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A tool has been developed at Fraunhofer-IPM to calculate the transport properties of thermoelectric material by using its band structure described in terms of effective masses and the location of the ellipsoids in reciprocal space. The calculated transport properties are compared with experimental data measured on bismuth telluride, antimony telluride, and bismuth antimony telluride. Polycrystalline specimens have been prepared by spark plasma sintering (Fraunhofer-IFAM). Electron backscattering diffraction analysis of sample cross-sections yields the frequency distribution of grain orientations. This texture information permits the generation of appropriate finite-element models of the polycrystalline microstructure (TU Dresden). By means of the commercial code COMSOL, which allows anisotropic thermoelectric properties to be taken into account, the effective electrical and thermal conductivities as well as the Seebeck coefficient both parallel and perpendicular to the pressing direction have been calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.J. Goldsmidt and M. Situmorang, Proceedings of the 8th International Conference on Thermoelectrics, Nancy, France (1989), p. 1.

  2. J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, Mater. Sci. Eng. B 117, 334 (2005).

    Article  Google Scholar 

  3. L. Chaput, Calculation of the Transport Properties of Thermoelectric Materials (France: PhD Polytechnic Institute of Lorraine, 2006).

    Google Scholar 

  4. T.J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J.V. Badding, and J.O. Sofol, Phys. Rev. B 68, 125210 (2003).

    Article  ADS  Google Scholar 

  5. S.K. Mishra, S. Satpathy, and O. Jepsen, J. Phys. Condens. Matter 9, 461 (1997).

    Article  CAS  ADS  Google Scholar 

  6. L. Chaput, P. Pécheur, and H. Scherrer, Phys. Rev. B 75, 045116 (2007).

    Article  ADS  Google Scholar 

  7. C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).

  8. B.-L. Huang and M. Kaviany, Phys. Rev. B 77, 125209 (2008).

    Article  ADS  Google Scholar 

  9. Landolt-Börnstein, Group III Condensed Matter, ed. H. Fischer (Berlin, Heidelberg: Springer, 1988), ISSN 1615-1925.

  10. M. Stordeur, M. Stölzer, H. Sobotta, and V. Riedle, Phys. Stat. Solidi (b) 150, 165 (1988).

    Google Scholar 

  11. J.R. Drabble and R. Wolfe, Proc. Phys. Soc. B 69, 1101 (1956).

    Article  ADS  Google Scholar 

  12. A. Jacquot, Proceedings of the European Conference on Thermoelectrics, Paris, France (2008), p. 1.

  13. J.H. Dennis, Technical Report 377 (Cambridge: Research Laboratory of Electronics, Massachusetts Institute of Technology, January 15, 1961), 52 p.

  14. V. Randle and O. Engler, Texture Analysis––Macrotexture, Microtexture & Orientation Mapping (Boca Raton, FL: CRC, 2009), 480 p.

    Google Scholar 

  15. D.G. Ebling, A. Jacquot, J. König, H. Böttner, J. Schmidt, and P. Spies, Proceedings of the 26th International Conference on Thermoelectrics, Korea, O-D-6 (2007).

  16. D.G. Ebling, M. Jaegle, M. Bartel, A. Jacquot, and H. Böttner, J. Electron. Mater. 38, 1456 (2009). doi:10.1007/s11664-009-0825-0.

    Article  CAS  ADS  Google Scholar 

  17. E.E. Antonova and D.C. Looman, Proceedings of the 24th International Conference on Thermoelectrics, Clemson, USA (2005), p. 215.

  18. H. Scherrer and S. Scherrer, Handbook of Thermoelectrics (Boca Raton, FL: CRC, 1995), Chap. 19.

    Google Scholar 

  19. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).

    Article  CAS  ADS  PubMed  Google Scholar 

  20. A. Jacquot, J. König, and H. Böttner, Proceedings of the 25th International Conference on Thermoelectrics, Vienna, Austria (2006), p. 184.

  21. G.W. Milton, The Theory of Composites (Cambridge: Cambridge University Press, 2002), Chap. 10.

Download references

Acknowledgements

The authors thank Marian Böhling, who worked at the Institut für Werkstoffwissenschaft, Technische Universität Dresden, for performing the EBSD analysis. This work was supported by the German Federal Ministry of Education and Research (BMBF) within the joint project VEKTRA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jacquot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacquot, A., Farag, N., Jaegle, M. et al. Thermoelectric Properties as a Function of Electronic Band Structure and Microstructure of Textured Materials. J. Electron. Mater. 39, 1861–1868 (2010). https://doi.org/10.1007/s11664-009-1059-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-1059-x

Key words

Navigation