Skip to main content
Log in

Bulk Nanostructured Thermoelectric Materials: Preparation, Structure and Properties

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Bulk nanostructured materials have recently emerged as a new paradigm for improving the performance of existing thermoelectric materials. Here, we fabricated two kinds of bulk nanostructured thermoelectric materials by a bottom-up strategy and an in situ precipitation method, respectively. Binary PbTe was fabricated by a combination of chemical synthesis and hot pressing. The grain sizes of the hot pressed bulk samples varied from 200 nm to 400 nm, which significantly contributed to the reduction of thermal conductivity due to the enhanced boundary phonon scattering. The highest figure of merit ZT of the binary PbTe sample reached 0.8 at 580 K. Mg2(Si,Sn) solid solutions have shown great promise for thermoelectric application, due to good thermoelectric properties, non-toxicity, and abundantly available constituent elements. The nanoscale microstructure observation of the compounds showed the existence of nanophases formed in situ, which is believed to be related to the relatively low lattice thermal conductivity in this material system. The highest ZT of Sb-doped Mg2(Si,Sn) samples reached 1.1 at 770 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T.M. Trittand and M.A. Subramanian, MRS Bull. 31, 188 (2006).

    Google Scholar 

  2. G.J. Snyderand and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  ADS  Google Scholar 

  3. X. Shi, H. Kong, C.P. Li, C. Uher, J. Yang, J.R. Salvador, H. Wang, L. Chen, and W. Zhang, Appl. Phys. Lett. 92, 182101 (2008)

    Google Scholar 

  4. G.S. Nolas, J. Poon, and M. Kanatzidis, MRS Bull. 31, 199 (2006).

    CAS  Google Scholar 

  5. C. Yu, T.J. Zhu, R.Z. Shi, Y. Zhang, X.B. Zhao, and J. He, Acta Mater. 57, 2757 (2009).

    Article  CAS  Google Scholar 

  6. S.M. Kauzlarich, S.R. Brown, and G.J. Snyder, Dalton Trans., 2099 (2007).

  7. S.R. Brown, S.M. Kauzlarich, F. Gascoin, and G.J. Snyder, Chem. Mater. 18, 1873 (2006).

    Article  CAS  Google Scholar 

  8. A.I. Hochbaum, R.K. Chen, R.D. Delgado, W.J. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P.D. Yang, Nature 451, 163-U5 (2008).

  9. T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297, 2229 (2002).

    Article  CAS  ADS  PubMed  Google Scholar 

  10. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).

    Article  CAS  ADS  PubMed  Google Scholar 

  11. X.B. Zhao, X.H. Ji, Y.H. Zhang, J.P. Tu, and X.B. Zhang, Appl. Phys. Lett. 86, 062111 (2005).

    Article  ADS  Google Scholar 

  12. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009).

    Article  CAS  Google Scholar 

  13. B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Article  CAS  ADS  PubMed  Google Scholar 

  14. G. Joshi, H. Lee, Y.C. Lan, X.W. Wang, G.H. Zhu, D.Z. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Nano Lett. 8, 4670 (2008).

    Article  CAS  ADS  PubMed  Google Scholar 

  15. J. Martin, L. Wang, L. Chen, and G.S. Nolas, Phys. Rev. B: Condens. Matter Mater. Phys. 79, 115311 (2009).

    ADS  Google Scholar 

  16. J. Martin, G.S. Nolas, W. Zhang, and L. Chen, Appl. Phys. Lett. 90, 222112 (2007).

    Article  ADS  Google Scholar 

  17. W.J. Xie, X.F. Tang, Y.G. Yan, Q.J. Zhang, and T.M. Tritt, Appl. Phys. Lett. 94, 102111 (2009).

    Google Scholar 

  18. T.J. Zhu, F. Yan, X.B. Zhao, S.N. Zhang, Y. Chen, and S.H. Yang, J. Phys. D: Appl. Phys. 40, 6094 (2007).

    Article  CAS  ADS  Google Scholar 

  19. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).

    Article  CAS  ADS  PubMed  Google Scholar 

  20. T. Ikeda, V.A. Ravi, and G.J. Snyder, Acta Mater. 57, 666 (2009).

    Article  CAS  Google Scholar 

  21. T. Ikeda, E.S. Toberer, V.A. Ravi, G.J. Snyder, S. Aoyagi, E. Nishibori, and M. Sakata, Scripta Mater. 60, 321 (2009).

    Article  CAS  Google Scholar 

  22. Q. Zhang, J. He, X.B. Zhao, S.N. Zhang, T.J. Zhu, H. Yin, and T.M. Tritt, J. Phys. D: Appl. Phys. 41, 185103 (2008).

    Google Scholar 

  23. Y.Q. Cao, X.B. Zhao, T.J. Zhu, X.B. Zhang, and J.P. Tu, Appl. Phys. Lett. 92, 143106 (2008).

    Google Scholar 

  24. Y.Q. Cao, T.J. Zhu, X.B. Zhao, X.B. Zhang, and J.P. Tu, Appl. Phys. A: Mater. Sci. Process. 92, 321 (2008).

    Article  CAS  ADS  Google Scholar 

  25. Y.Q. Cao, T.J. Zhu, and X.B. Zhao, J. Phys. D: Appl. Phys. 42, 015406 (2009).

    Google Scholar 

  26. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Phys. Rev. B: Condens. Matter Mater. Phys. 74, 045207 (2006).

    Google Scholar 

  27. Q. Zhang, J. He, T.J. Zhu, S.N. Zhang, X.B. Zhao, and T.M. Tritt, Appl. Phys. Lett. 93, 102109 (2008).

    Google Scholar 

  28. Q. Zhang, H. Yin, X.B. Zhao, J. He, X.H. Ji, T.J. Zhu, and T.M. Tritt, Phys. Status Solidi A 205, 1657 (2008).

    Article  CAS  ADS  Google Scholar 

  29. Q. Zhang, X.B. Zhao, T.J. Zhu, and J.P. Tu, Phys. Status Solidi RRL 2, 56 (2008).

    Article  CAS  ADS  Google Scholar 

  30. S.H. Yang, T.J. Zhu, T. Sun, S.N. Zhang, X.B. Zhao, and J. He, Nanotechnology 19, 245707 (2008).

    Google Scholar 

  31. B.A. Cook, M.J. Kramer, J.L. Harringa, M.K. Han, D.Y. Chung, and M.G. Kanatzidis, Adv. Funct. Mater. 19, 1254 (2009).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The work was supported by the National Basic Research Program of China (2007CB607502), the National ‘863’ Hi-tech. Program of China (2007AA 03Z234), NSFC (50971115) and the S&T Program of Zhejiang Province (2009C34007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tie-Jun Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, TJ., Cao, YQ., Zhang, Q. et al. Bulk Nanostructured Thermoelectric Materials: Preparation, Structure and Properties. J. Electron. Mater. 39, 1990–1995 (2010). https://doi.org/10.1007/s11664-009-1037-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-1037-3

Key words

Navigation