Skip to main content
Log in

Microstructures of Annealed TiNiSn-Based Alloy Ribbons

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The thermoelectric half-Heusler compounds Ti x NiSn0.998Sb0.002 (x = 1.0 to 1.2) and Ti y Zr0.25Hf0.25NiSn0.998Sb0.002 (y = 0.5 to 0.65) with nonstoichiometric nominal compositions were prepared by spin-casting and subsequent annealing at 1073 K for 24 h. The dimensionless figure of merit ZT at room temperature was maximized at x = 1.1 and y = 0.6 in Ti-rich compounds through an increase in absolute Seebeck coefficients despite a decrease in electrical conductivities. ZT reached 0.07 at x = 1.1 and 0.14 at y = 0.6. In powder x-ray diffraction analysis, minor phases of β-Sn, TiNi, Ti2Sn, and Ti5Sn3 were observed in addition to a major phase of half-Heusler. The quantity of the minor phases was minimized at x = 1.1 and y = 0.55, where the absolute Seebeck coefficients are maximized. In transmission electron microscopic (TEM) analysis of Ti0.55Zr0.25Hf0.25NiSn0.998Sb0.002, crystal grains of the half-Heusler phase, from several hundred nanometers to several micrometers in size, were observed. TEM energy-dispersive spectroscopy measurements indicated that fluctuations of Ti, Zr, and Hf compositions within the Ti-site in the half-Heusler phase may occur. Thermoelectric properties were improved at x = 1.1 and y = 0.6 rather than at the stoichiometric compositions of x = 1.0 and y = 0.5 due to minimization of the precipitate quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Uher, J. Yang, S. Hu, D.T. Morelli, and G.P. Meisner, Phys. Rev. B 59, 8615 (1999).

    Article  CAS  ADS  Google Scholar 

  2. N. Shutoh and S. Sakurai, J. Alloys Compd. 389, 204 (2005).

    Article  CAS  Google Scholar 

  3. Q. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G.P. Meisner, and C. Uher, Appl. Phys. Lett. 79, 4165 (2001).

    Article  CAS  ADS  Google Scholar 

  4. Q. Shen, L. Zhang, L. Chen, T. Goto, and T. Hirai, J. Mater. Sci. Lett. 20, 2197 (2001).

    Article  CAS  Google Scholar 

  5. T. Morimura, M. Hasaka, S. Yoshida, and H. Nakashima, J. Electron. Mater. 38, 1154 (2009).

    Article  CAS  ADS  Google Scholar 

  6. F. Izumi and T. Ikeda, Mater. Sci. Forum 321–324, 198 (2000).

    Article  Google Scholar 

  7. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).

    Article  CAS  ADS  PubMed  Google Scholar 

  8. R.V. Skolozdra, Y.V. Stadnyk, Y.K. Gorelenko, and E.É. Teletskaya, Sov. Phys. Solid State 32, 1536 (1990).

    Google Scholar 

  9. T. Nobata, G. Nakamoto, M. Kurisu, Y. Makihara, T. Tokuyoshi, and I. Nakai, Jpn. J. Appl. Phys. 38, 429 (1999).

    Article  CAS  Google Scholar 

  10. T. Nobata, G. Nakamoto, M. Kurisu, Y. Makihara, K. Ohoyama, and M. Ohashi, J. Alloys Compd. 347, 86 (2002).

    Article  CAS  Google Scholar 

  11. T. Morimura and M. Hasaka, Ultramicroscopy 106, 553 (2006).

    Article  CAS  Google Scholar 

  12. T. Morimura, M. Hasaka, and S. Kondo, Scr. Mater. 59, 886 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Morimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morimura, T., Hasaka, M., Shimoda, K. et al. Microstructures of Annealed TiNiSn-Based Alloy Ribbons. J. Electron. Mater. 39, 2149–2153 (2010). https://doi.org/10.1007/s11664-009-0982-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0982-1

Keywords

Navigation