Journal of Electronic Materials

, Volume 39, Issue 1, pp 105–108 | Cite as

Tin Pest in Sn-0.5Cu Lead-Free Solder Alloys: A Chemical Analysis of Trace Elements

  • Monika Leodolter-Dworak
  • Ilse Steffan
  • William J. Plumbridge
  • Herbert IpserEmail author


Two samples of Sn-0.5Cu solder alloys, stored at −18°C for 7 years, were chemically analyzed by an inductively coupled plasma-optical emission spectroscopy method. One of the samples was unaffected by this exposure; the other one had completely transformed into brittle α-Sn. Ten elements were found to exhibit statistically significant differences in their concentrations between the two samples, with the higher always associated with the untransformed sample. The highest concentrations were found for elements with an appreciable solubility in Sn, i.e., Bi, In, Pb, and Sb.


Metal and alloys lead-free solders aging phase transformations tin pest chemical analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research is a contribution to the European COST Action MP 0602. Financial support of the Austrian Science Foundation (FWF) under Project No. P 17346 is gratefully acknowledged.


  1. 1.
    Official Journal of the European Union (L37) (2003), 19; 24. (
  2. 2.
    See any text book on Inorganic Chemistry, e.g., N. Wiberg, Hollemann-Wiberg: Lehrbuch der Anorganischen Chemie, 102nd ed. (Berlin - New York: de Gruyter, 2007).Google Scholar
  3. 3.
    P. Villard and L.D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed., Vol. 4 (Materials Park, OH: ASM International, 1991), p. 5285.Google Scholar
  4. 4.
    W.J. Plumbridge, J. Mater. Sci. Mater. Electron. 18, 307 (2007).CrossRefGoogle Scholar
  5. 5.
    G. Tamman and K.L. Dreyer, Z. Anorg. Chem. 199, 97 (1931).CrossRefGoogle Scholar
  6. 6.
    E. Cohen and A.K.W.A. van Lieshout, Proc. K. Akad. Wet., Amsterdam 39, 1174 (1936).Google Scholar
  7. 7.
    E. Cohen, W.A.T. Cohen de Meester, and J. Landsman, Proc. K. Akad. Wet., Amsterdam 40, 746 (1937).Google Scholar
  8. 8.
    W.J. Plumbridge, J. Electron. Mater. 37, 218 (2008).CrossRefADSGoogle Scholar
  9. 9.
    Y. Kariya, N. Williams, C.R. Gagg, and W.J. Plumbridge, J. Met. 53(6), 39 (2001).Google Scholar
  10. 10.
    G.V. Raynor and R.W. Smith, Proc. R. Soc. 244A, 101 (1958).ADSGoogle Scholar
  11. 11.
    E. Cohen and A.K.W.A. van Lieshout, Proc. K. Akad. Wet., Amsterdam 39, 352 (1936).Google Scholar
  12. 12.
    E. Cohen, A.K.W.A. van Lieshout, and W.A.T. Cohen de Meester, Z. Phys. Chem. 178, 221 (1937).Google Scholar
  13. 13.
    R.R. Rogers and J.F. Fydell, J. Electrochem. Soc. 100, 383 (1953).CrossRefGoogle Scholar
  14. 14.
    C.W. Mason and W.D. Forgeng, Met. Alloy 6, 87 (1935).Google Scholar
  15. 15.
    T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, eds., Binary Alloy Phase Diagrams, 2nd ed. (Materials Park, OH: ASM International, 1990), p. 796, 2296, 3016, 3306.Google Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  • Monika Leodolter-Dworak
    • 1
  • Ilse Steffan
    • 1
  • William J. Plumbridge
    • 2
  • Herbert Ipser
    • 3
    Email author
  1. 1.Department of Analytical and Food ChemistryUniversity of ViennaWienAustria
  2. 2.Materials Engineering DepartmentThe Open UniversityMilton KeynesUK
  3. 3.Department of Inorganic Chemistry/Materials ChemistryUniversity of ViennaWienAustria

Personalised recommendations