Skip to main content
Log in

Methodology for Analyzing Strain States During In Situ Thermomechanical Cycling in Individual Lead-Free Solder Joints Using Synchrotron Radiation

Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

To examine how a lead-free solder joint deforms in a thermal cycling environment, both the elastic and plastic stress and strain behavior must be understood. Methods to identify evolution of the internal strain (stress) state during thermal cycling are described. A slice of a package containing a single row of solder joints was thermally cycled from 0°C to 100°C with a period of about 1 h with concurrent acquisition of transmission Laue patterns using synchrotron radiation. These results indicated that most joints are single crystals, with some being multicrystals with no more than a few Sn grain orientations. Laue patterns were analyzed to estimate local strains in different crystal directions at different temperatures during a thermal cycle. While the strains perpendicular to various crystal planes all vary in a similar way, the magnitude of strain varies. The specimens were subsequently given several hundred additional thermal cycles and measured again to assess changes in the crystal orientations. These results show that modest changes in crystal orientations occur during thermal cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. A.U. Telang, T.R. Bieler, S. Choi, and K.N. Subramanian, J.␣Mater. Res. 17, 2294 (2002).

    Article  CAS  ADS  Google Scholar 

  2. A. La Londe, D. Emelander, J. Jeannette, C. Larson, W. Rietz, D. Swenson, and D.W. Henderson, J. Electron. Mater. 33, 1545 (2004).

    Article  ADS  Google Scholar 

  3. L.P. Lehman, S.N. Athavale, T.Z. Flem, A.C. Giamis, R.K. Kinyanjui, M. Lowenstein, K. Mather, R. Patel, D. Rae, J.␣Wang, Y. Xing, L. Zavalij, P. Borgesen, and E.J. Cotts, J.␣Electron. Mater. 33, 1429 (2004).

    Article  CAS  ADS  Google Scholar 

  4. S. Terashima, K. Takahama, M. Nozaki, and M. Tanaka, Mater. Trans. JIM 45, 1383 (2004).

    Article  CAS  Google Scholar 

  5. P. Borgesen, T. Bieler, L.P. Lehman, and E.J. Cotts, MRS Bull. 32, 360 (2007).

    Google Scholar 

  6. T.R. Bieler, H. Jiang, L.P. Lehman, T. Kirkpatrick, E.J. Cotts, and B. Nandagopal, IEEE Trans. Compon. Packag. Technol. 31, 370 (2008).

    Article  CAS  Google Scholar 

  7. L.P. Lehman, Y. Xing, T.R. Bieler, and E.J. Cotts, Acta Mater. (2009), submitted.

  8. A.U. Telang, T.R. Bieler, A. Zamiri, and F. Pourboghrat, Acta Mater. 55, 2265 (2007).

    Article  CAS  Google Scholar 

  9. I.E. Anderson, J. Mater. Sci. 18, 55 (2007).

    CAS  Google Scholar 

  10. I. Dutta, D. Pan, R.A. Marks, and S.G. Jadhav, Mater. Sci. Eng. A 410–411, 48 (2005).

    Google Scholar 

  11. T.-K. Lee, K.-C. Liu, and T.R. Bieler, Microstructure and Orientation Evolution of the Sn Phase as a Function of Position in Ball Grid Arrays in Sn-Ag-Cu Solder Joints (this␣volume).

  12. D.G. House and E.V. Vernon, Br. J. Appl. Phys. 11, 254 (1960).

    Article  CAS  ADS  Google Scholar 

  13. V.T. Deshpande and D.B. Sirdeshmukh, Acta Cryst. 15, 294 (1962).

    Article  CAS  Google Scholar 

  14. M.A. Matin, E.W.C. Coenen, W.P. Vellinga, and M.G.D. Geers, Scripta Mater. 53, 927 (2005).

    Article  CAS  Google Scholar 

  15. M.A. Matin, W.P. Vellinga, and M.G.D. Geers, Mater. Sci. Eng. A 431, 166 (2006).

    Article  Google Scholar 

  16. T. Ungár, J. Gubicza, G. Ribárik, and A. Borbély, J. Appl. Cryst. 34, 298 (2001).

    Article  Google Scholar 

  17. P.R. Dawson, D.E. Boyce, and R.B. Rogge, Mater. Sci. Eng. A 399, 13 (2005).

    Article  Google Scholar 

  18. M. Hecker, E. Thiele, and C. Holste, Acta Mater. 50, 2357 (2002).

    Article  CAS  Google Scholar 

  19. A. Borbély and J.H. Driver, Mater. Sci. Eng. A 387–389, 231 (2004).

    Google Scholar 

  20. G. Schumacher, N. Darowski, I. Zizak, H. Klingelhöffer, and W. Neumann, Scripta Mater. 60, 88 (2009).

    Article  CAS  Google Scholar 

  21. A. Royer, P. Bastie, and M. Véron, Mater. Sci. Eng. A 234–236, 1110 (1997).

    Google Scholar 

  22. L. Margulies, T. Lorentzen, H.F. Poulsen, and T. Leffers, Acta Mater. 50, 1771 (2002).

    Article  CAS  Google Scholar 

  23. U. Lienert, M.C. Brandes, J.V. Bernier, J. Weiss, S.D. Shastri, M.J. Mills, and M.P. Miller, Mater. Sci. Eng. A (2009). doi:10.1016/j.msea.2009.06.047.

  24. T.R. Bieler and A.U. Telang, Analysis of Slip Behavior in a Single Shear Lap Lead Free Solder Joint During Simple Shear at 25°C and 0.1/s (this volume).

  25. B. Zhou, T.R. Bieler, A.U. Telang, T.-K. Lee, and K.-C. Liu, Methodology for Analyzing Slip Behavior in Individual Lead␣free Solder Joints During Simple Shear (this volume).

  26. G. Wu and S. Zaefferer, Ultramicroscopy (2009). doi:10.1016/j.ultramic.2009.06.002.

  27. http://www.webelements.com/tin/atom_sizes.html.

  28. M.E. Kassner, P. Geantil, L.E. Levine, and B.C. Larson, Int. J. Mater. Res. 100, 333 (2009).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R. Bieler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bieler, T.R., Lee, Tk. & Liu, KC. Methodology for Analyzing Strain States During In Situ Thermomechanical Cycling in Individual Lead-Free Solder Joints Using Synchrotron Radiation. J. Electron. Mater. 38, 2712–2719 (2009). https://doi.org/10.1007/s11664-009-0919-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0919-8

Keywords

Navigation