Journal of Electronic Materials

, Volume 38, Issue 11, pp 2376–2387 | Cite as

Primary Creep in Sn3.8Ag0.7Cu Solder. Part I: Theory, Experiments, and Data Reduction

  • D. R. Shirley
  • J. K. SpeltEmail author
Open Access

This article presents constant-load creep and stress relaxation data for Sn3.8Ag0.7Cu spanning a range of strain rates \( 10^{ - 8}\, \hbox{s}^{ - 1} < \dot{\varepsilon } < 10^{ - 4}\, \hbox{s}^{ - 1} , \) and temperatures 25°C, 75°C, and 100°C. Creep and stress relaxation measurements showed that transient creep caused faster strain rates during stress relaxation for a given stress than the corresponding minimum creep rate from constant-load creep tests. The extent of strain hardening during primary creep was a function of temperature and strain rate. Data reduction incorporated a fast Fourier transform method to remove spurious data from stress relaxation corresponding to the period of partial strain relaxation during loading.


Tin–silver–copper (Sn-Ag-Cu) solder transient creep stress relaxation reliability 



The authors thank Research in Motion Ltd. (Laura Turbini, Bev Christian, Gene Burger), Celestica Inc. (Polina Snugovsky, Peter Arrowsmith, Rob Emery), University of Toronto, Ontario Centres of Excellence (OCE), and National Sciences and Engineering Research Council of Canada (NSERC) for their invaluable support of this research.


  1. 1.
    W.W. Lee, L.T. Nguyen, and G.S. Selvaduray, Microelectron. Reliab. 40, 231 (2000).CrossRefGoogle Scholar
  2. 2.
    D.R. Shirley, H.R. Ghorbani, and J.K. Spelt, Microelectron. Reliab. 48, 455 (2008).CrossRefGoogle Scholar
  3. 3.
    P. Vianco, Lead-Free Solder Interconnect Reliability, ed. D. Shangguan (Materials Park, OH: ASM, 2005), p. 67.Google Scholar
  4. 4.
    G.E. Dieter, Mechanical Metallurgy (New York: McGraw-Hill, 1986).Google Scholar
  5. 5.
    A.J. Kennedy, Processes of Creep and Fatigue in Metals (New York: Wiley, 1963).Google Scholar
  6. 6.
    L.J. Ladani, IEEE Trans. Device Mater. Res. 8, 375 (2008).CrossRefGoogle Scholar
  7. 7.
    X. Nie, D. Bhate, D. Chan, W. Chen, G. Subbarayan, and I. Dutta, 11th Intersociety Conference on IEEE ITHERM (2008), p. 676.Google Scholar
  8. 8.
    Q. Zhang, A. Dasgupta, D. Nelson, and H. Pallavicini, J. Electron. Packag. 127, 415 (2005).CrossRefGoogle Scholar
  9. 9.
    G. Cuddalorepatta and A. Dasgupta, IEEE EuroSimE (Germany, 2008), p. 1.Google Scholar
  10. 10.
    D.R. Shirley and J.K. Spelt, J. Electron. Mater. (2009). doi:  10.1007/s11664-009-0906-0
  11. 11.
    ISO 204:1997 Uninterrupted Uniaxial Creep Testing (1997).Google Scholar
  12. 12.
    ASTM E139-00 Standard Test Methods for Conducting Creep (2000), p. 285.Google Scholar
  13. 13.
    L. Ma, S. Bao, D. Lv, Z. Du, and S. Li, IEEE International Conferences on Electron Packaging Technology (Shanghai, 2007), p. 1.Google Scholar
  14. 14.
    W.J. Plumbridge, R.J. Matela, and A. Westwater, Structural Integrity and Reliability in Electronics (Boston: Kluwer, 2003).Google Scholar
  15. 15.
    A.D. Holmes and F. Jing, J. Phys. D: Appl. Phys. 27, 2475 (1994).CrossRefADSGoogle Scholar
  16. 16.
    I. Koychev and R. Lothian, Research and Development in Intelligent Systems XXII Proceedings of AI-2005 (Cambridge, UK, 2005), p. 46.Google Scholar
  17. 17.
    M. Kukar, Artificial Intelligence in Medicine in Europe (Protaras, Cyprus, 2003), p. 355.Google Scholar
  18. 18.
    E.O. Brigham, The Fast Fourier Transform and Its Applications (Englewood Cliffs, NJ: Prentice Hall, 1988).Google Scholar
  19. 19.
    D.F. Elliott and K.R. Rao, Fast Transforms: Algorithms, Analyses, Applications (New York: Academic Press, 1982).zbMATHGoogle Scholar
  20. 20.
    C. Pan, IEEE Trans. Signal Process. 49, 444 (2001).CrossRefADSGoogle Scholar
  21. 21.
    J.E. Hockett and P.P. Gillis, Int. J. Mech. Sci. 13, 251 (1971).CrossRefGoogle Scholar
  22. 22.
    J.H. Holbrook, J.C. Swearengen, and R.W. Rohde, ASTM STP 765, 80 (1982).Google Scholar
  23. 23.
    O.D. Sherby and P.M. Burke, Prog. Mater. Sci. 13, 323 (1968).CrossRefGoogle Scholar
  24. 24.
    S.O. Ojediran and O. Ajaja, J. Mater. Sci. 23, 4037 (1988).CrossRefADSGoogle Scholar
  25. 25.
    A. Schubert, R. Dudek, E. Auerswald, A. Gollhardt, B. Michel, and H. Reichl, IEEE ECTC (New Orleans, 2003), p. 603.Google Scholar
  26. 26.
    R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials (New York: Wiley, 1996).Google Scholar
  27. 27.
    Y. Nakamura and T. Ono, J. Mater. Sci. 40, 3267 (2005).CrossRefADSGoogle Scholar
  28. 28.
    J.H.L. Pang, B.S. Xiong, C.C. Neo, X.R. Zhang, and T.H. Low, ECTC (New Orleans, 2003).Google Scholar
  29. 29.
    D.A. Ratkowsky, Handbook of Nonlinear Regression Models (New York: Marcel Dekker, 1990).zbMATHGoogle Scholar
  30. 30.
    H. Mavoori, J. Chin, S. Vaynman, B. Moran, L. Keer, and M. Fine, J. Electron. Mater. 26, 783 (1997).CrossRefADSGoogle Scholar
  31. 31.
    P. Gay and A. Kelly, Acta Crystallogr. 6, 172 (1953).CrossRefGoogle Scholar
  32. 32.
    D. Hardwick, C.M. Sellars, and W.J. Tegart, J. Inst. Met. 90, 21 (1961).Google Scholar
  33. 33.
    W.R. Thorpe and I.O. Smith, Phys. Status Solidi 52, 487 (1979).CrossRefGoogle Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada
  2. 2.Department of Materials Science and EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations