Skip to main content
Log in

Thermodynamic Descriptions for the Cd-Te, Pb-Te, Cd-Pb and Cd-Pb-Te Systems

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

The thermodynamic behaviors of the Cd-Te, Pb-Te, Cd-Pb and Cd-Pb-Te systems are critically analyzed in this work by means of the calculation of phase diagrams (CALPHAD) method. The liquid phases containing Te are described by the associated solution model, which is capable of dealing with V-shaped curves of mixing enthalpies in solution phases, sharp maxima of liquidus curves in phase diagrams, and abrupt changes in activity plots. The binary compounds, CdTe and PbTe, are considered to be stoichiometric in the two binary systems, but they form a line compound described by (Cd,Pb)1(Te)1 in the ternary system. The fcc phase, in which only Cd and Pb elements are present, is treated with the substitutional solution model. The experimental data available in the literature are extensively assessed, from which the thermodynamic parameters necessary for each phase are obtained. Various calculated phase equilibria and thermodynamic properties are compared with the experimental data. The excellent agreement indicates that this work contributes to the study of phase stabilities in the Cd-Pb-Te system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Leitsmann, F. Bechstedt, H. Groiss, F. Schäffler, W. Heiss, K. Koike, H. Harada, and M. Yano, Appl. Surf. Sci. 254, 397 (2007).

    Article  ADS  CAS  Google Scholar 

  2. M. Yano, I. Makabe, and K. Koike, Physica E 20, 449 (2004).

    Article  ADS  CAS  Google Scholar 

  3. P. Dziawa, B. Taliashvili, W. Domuchowski, L. Kowalczyk, E. Lusakowska, A. Mycielski, V. Osinniy, and T. Story, Phys. Status Solidi C 2, 1167 (2005).

    Article  ADS  CAS  Google Scholar 

  4. F. Sommer, CALPHAD 2, 319 (1978).

    Article  CAS  Google Scholar 

  5. L.S. Darken, Trans. AIME 239, 80 (1967).

    CAS  Google Scholar 

  6. R.C. Sharma and Y.A. Chang, Bull. Alloy Phase Diagrams 10, 334 (1989).

    Article  CAS  Google Scholar 

  7. A. Halimi and M.S. Ferah, Int. J. Microstruct. Mater. Prop. 3, 77 (2008).

    Article  CAS  Google Scholar 

  8. K. Yamaguchi, K. Hongo, K. Hack, I. Hurtado, and D. Neuschütz, Mater. Trans. JIM 41, 790 (2000).

    CAS  Google Scholar 

  9. Y.L. Kharif, P.V. Kovtunenko, A.A. Maier, and I.K. Avetisov, Russ. J. Phys. Chem. 56, 1331 (1982).

    Google Scholar 

  10. J.C. Lin, K.C. Hsieh, R.C. Sharma, and Y.A. Chang, Bull. Alloy Phase Diagrams 10, 340 (1989).

    Article  CAS  Google Scholar 

  11. W. Zakulski and Z. Moser, J. Phase Equilib. 16, 239 (1995).

    Article  CAS  Google Scholar 

  12. M. Kobayashi, Z. Anorg. Chem. 69, 1 (1911).

    Article  CAS  Google Scholar 

  13. W.D. Lawson, S. Nielsen, E.H. Putley, and A.S. Young, J. Phys. Chem. Solids 9, 325 (1959).

    Article  ADS  CAS  Google Scholar 

  14. D. DeNobel, Philips Res. Rep. 14, 361 (1959).

    CAS  Google Scholar 

  15. M.R. Lorenz, J. Phys. Solids 23, 939 (1962).

    Article  ADS  CAS  Google Scholar 

  16. B.M. Kulwicki (Ph.D. thesis, The University of Michigan, Ann Arbor, Michigan, USA, 1963).

  17. J. Steininger, A.J. Strauss, and R.F. Brebrick, J. Appl. Phys. 117, 1305 (1970).

    CAS  Google Scholar 

  18. R.F. Brebrick, J. Electrochem. Soc. 118, 2014 (1971).

    Article  CAS  Google Scholar 

  19. A.S. Tomson, A.A. Davydov, and S.M. Grigorovich, Izv. Akad. Nauk SSSR, Neorg. Mater. 8, 1905 (1972).

    CAS  Google Scholar 

  20. D.R. Mason and D.F. O’Kane, Preparation and Properties of Some Peritectic Semiconducting Compounds (New York, NY: Academic Press, 1961).

    Google Scholar 

  21. S.D. Gromakov, I.V. Zoroatskaya, Z.M. Latypov, M.A. Chvala, E.A. Eidelman, L.I. Badysina, and L.G. Zaripova, Z.␣Neorg. Khim. 9, 2485 (1964).

    CAS  Google Scholar 

  22. L.A. Sysoev, E.K. Raiskin, and V.R. Gur′ev, Izv. Akad. Nauk SSSR, Neorg. Mater. 3, 390 (1967).

    CAS  Google Scholar 

  23. M.J. Pool, Trans. AIME 23, 1711 (1965).

    Google Scholar 

  24. P.M. Robinson and J.S.LI. Leach, Trans. AIME 236, 818 (1966).

    CAS  Google Scholar 

  25. R. Agarwal, V. Venugopal, and D.D. Sood, J. Alloys Compd. 200, 93 (1993).

    Article  CAS  Google Scholar 

  26. J.H. McAteer and H. Seltz, J. Am. Chem. Soc. 58, 2081 (1936).

    Article  CAS  Google Scholar 

  27. M. Shamsuddin and A. Nasar, High Temp. Sci. 28, 245 (1990).

    Google Scholar 

  28. R.F. Brebrick and A.J. Strauss, J. Phys. Chem. Solids 25, 1441 (1964).

    Article  ADS  CAS  Google Scholar 

  29. P.M. Robinson and M.B. Bever, Trans. AIME 236, 814 (1966).

    CAS  Google Scholar 

  30. B.B. Rugg, N.J. Silk, A.W. Bryant, and B.B. Argent, CALPHAD 19, 389 (1995).

    Article  CAS  Google Scholar 

  31. A. Amzil, J.C. Mathieu, and R. Castanet, J. Alloys Compd. 256, 192 (1997).

    Article  CAS  Google Scholar 

  32. J. Terpilowski and E. Ratajzak, Bull. Acad. Pol. Sci. 12, 355 (1964).

    CAS  Google Scholar 

  33. L.A. Zabdyr, J. Electrochem. Soc. 131, 2157 (1984).

    Article  CAS  Google Scholar 

  34. I.V. Korneeva, A.V. Belayaev, and A.V. Novoselova, Inorg. Mater. 5, 1 (1960).

    Google Scholar 

  35. P. Goldfinger and M. Jeunehomme, Trans. Faraday Soc. 59, 2851 (1963).

    Article  CAS  Google Scholar 

  36. A.V. Vanyukov, A.A. Davydov, and A.S. Tomson, Russ. J. Phys. Chem. 43, 1324 (1969).

    Google Scholar 

  37. L.R. Shiozawa and J.M. Jost, Research on Improved II–VI Compounds, Final Technical Report, Clevite Corporation, Contract F33615-68-C-1601-P002, Project 7885 (August 1970).

  38. T. Tung, L. Golonka, and R.F. Brebrick, J. Electrochem. Soc. 128, 1601 (1981).

    Article  CAS  Google Scholar 

  39. K.C. Mills, Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides (London: Butterworth, 1974), pp. 51–76.

    Google Scholar 

  40. M. Kimura, Mem. Coll. Sci. Kyoto Univ. 1, 149 (1915).

    Google Scholar 

  41. B.E. Pelzel, Metallurgy 10, 717 (1956).

    CAS  Google Scholar 

  42. T.R.A. Davey, Physical Chemistry of Process Metallurgy (New York: AIME, Interscience Publishers, 1961), pp. 581–600.

    Google Scholar 

  43. W. Lugscheider, H. Ebel, and G. Langer, Z. Metallkd. 56, 851 (1965).

    CAS  Google Scholar 

  44. E. Miller and K.L. Komarek, Trans. AIME 236, 832 (1966).

    CAS  Google Scholar 

  45. J.S. Harris, J.T. Longo, E.R. Gertner, and J.E. Clarke, J.␣Cryst. Growth 28, 334 (1975).

    Article  ADS  CAS  Google Scholar 

  46. N. Moniri and C. Petot, J. Calorim. Anal. Thermodyn. 9B, 195 (1978).

    Google Scholar 

  47. A.P. Petukkov, Y.V. Andreev, and A.O. Olesk, Izv. Akad. Nauk SSSR, Neorg. Mater. 16, 272 (1980).

    Google Scholar 

  48. T.L. Ngai, D. Marshall, R.C. Sharma, and Y.A. Chang, Monatsh. Chem. 118, 277 (1987).

    Article  CAS  Google Scholar 

  49. H. Fay and C.B. Gillson, Am. Chem. J. 27, 81 (1902).

    Google Scholar 

  50. J.N. Greenwood and H.W. Worner, J. Inst. Metals 115, 435 (1939).

    Google Scholar 

  51. R. Blachnik and B. Gather, J. Less Common Met. 92, 207 (1983).

    Article  CAS  Google Scholar 

  52. B. Predel, J. Piehl, and M.J. Pool, Z. Metallkd. 66, 347 (1975).

    CAS  Google Scholar 

  53. B. Fuglevicz, Pol. J. Chem. 58, 983 (1984).

    Google Scholar 

  54. R. Castanet, Y. Claire, and M. Laffitte, High Temp.–High Pressures 4, 343 (1972).

    CAS  Google Scholar 

  55. C.T. Heycock and F.H. Neville, J. Chem. Soc. 65, 65 (1894).

    CAS  Google Scholar 

  56. E. Jaenecke, Z. Phys. Chem. 60, 339 (1907).

    Google Scholar 

  57. A. Stoffel, Z. Anorg. Chem. 53, 137 (1907).

    Article  CAS  Google Scholar 

  58. W.E. Barlow, Z. Anorg. Chem. 70, 178 (1911).

    Article  Google Scholar 

  59. J. Goebel, Z. Metallkd. 14, 388 (1923).

    Google Scholar 

  60. E. Abel, O. Redich, and J. Adler, Z. Anorg. Chem. 174, 257 (1928).

    Article  CAS  Google Scholar 

  61. E. Jenckel and H. Maeder, Metallwirtschaft 16, 449 (1937).

    Google Scholar 

  62. E.C. Rollason, J. Inst. Metals 63, 191 (1938).

    Google Scholar 

  63. A. Pasternak, Bull. Acad. Pol. Sci. A. Sci. Mater. 17, 192 (1951).

    Google Scholar 

  64. E. Schuermann, Arch. Eisenhüttenwes 30, 103 (1959).

    Google Scholar 

  65. Z. Wojtaszek and J. Dubowy, Zesz. Nauk, U. J. Mat. Fiz. Chem. 5, 2 (1959).

    Google Scholar 

  66. J.F. Elliott and J. Chipman, Trans. Faraday Soc. 47, 138 (1951).

    Article  CAS  Google Scholar 

  67. Z. Kozuka and J. Moriyama, J. Min. Metall. Inst. Jpn. 80, 887 (1964).

    CAS  Google Scholar 

  68. Z. Moser, K. Fitzner, and L. Zabdyr, Rev. Roum. Chim. 18, 557 (1973).

    CAS  Google Scholar 

  69. L. Zabdyr, Arch. Hutn. 18, 209 (1973).

    CAS  Google Scholar 

  70. L. Schuffenecker, D. Balesdent, and J. Houriez, Thermochim. Acta 38, 89 (1980).

    Article  CAS  Google Scholar 

  71. L. Schuffenecker, D. Balesdent, and J. Houriez, J. Chem. Thermodyn. 12, 1157 (1980).

    Article  CAS  Google Scholar 

  72. F.J. Nazareth and E.H. Baker, High Temp.–High Pressures 15, 565 (1983).

    CAS  Google Scholar 

  73. M. Kawakami, Z. Anorg. Chem. 167, 345 (1927).

    Article  CAS  Google Scholar 

  74. O.J. Kleppa, J. Phys. Chem. 59, 354 (1955).

    Article  CAS  Google Scholar 

  75. W. Oelsen, E. Shumann, H.J. Weigt, and O. Oelsen, Arch. Eisenhüttenwes 8, 487 (1956).

    Google Scholar 

  76. J. Rosenberg, R. Grierson, J.C. Woolley, and P. Nikolic, Trans. AIME 230, 342 (1964).

    CAS  Google Scholar 

  77. G. Morgant, B. Legendre, and C. Souleau, Bull. Soc. Chim. Fr. 3–4, 133 (1980).

    Google Scholar 

  78. A.J. Crocker, J. Mater. Sci. 3, 534 (1968).

    Article  ADS  CAS  Google Scholar 

  79. H. Tai and S. Hori, J. Jpn. Inst. Met. 38, 451 (1974).

    CAS  Google Scholar 

  80. Z.F. Tomashik and V.N. Tomashik, Izv. Akad. Nauk SSSR, Neorg. Mater. 18, 1722 (1982).

    Google Scholar 

  81. T. Hirai and K. Kurata, Trans. Jpn. Inst. Met. 9, 301 (1968).

    CAS  Google Scholar 

  82. A. Dinsdale, CALPHAD 15, 317 (1991).

    Article  CAS  Google Scholar 

  83. R. Schmid, Y. Chuang, and Y.A. Chang, CALPHAD 9, 383 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Zhang, L. & Yu, D. Thermodynamic Descriptions for the Cd-Te, Pb-Te, Cd-Pb and Cd-Pb-Te Systems. J. Electron. Mater. 38, 2033–2045 (2009). https://doi.org/10.1007/s11664-009-0875-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0875-3

Keywords

Navigation