Skip to main content
Log in

Low Fatigue in Epitaxial Pb(Zr0.2Ti0.8)O3 on Si Substrates with LaNiO3 Electrodes by RF Sputtering

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Epitaxial PZT (001) thin films with a LaNiO3 bottom electrode were deposited by radio-frequency (RF) sputtering onto Si(001) single-crystal substrates with SrTiO3/TiN buffer layers. Pb(Zr0.2Ti0.8)O3 (PZT) samples were shown to consist of a single perovskite phase and to have an (001) orientation. The orientation relationship was determined to be PZT(001)[110]∥LaNiO3(001)[110]∥SrTiO3 (001)[110]∥TiN(001)[110]∥Si(001)[110]. Atomic force microscope (AFM) measurements showed the PZT films to have smooth surfaces with a roughness of 1.15 nm. The microstructure of the multilayer was studied using transmission electron microscopy (TEM). Electrical measurements were conducted using both Pt and LaNiO3 as top electrodes. The measured remanent polarization P r and coercive field E c of the PZT thin film with Pt top electrodes were 23 μC/cm2 and 75 kV/cm, and were 25 μC/cm2 and 60 kV/cm for the PZT film with LaNiO3 top electrodes. No obvious fatigue after 1010 switching cycles indicated good electrical endurance of the PZT films using LaNiO3 electrodes, compared with the PZT film with Pt top electrodes showing a significant polarization loss after 108 cycles. These PZT films with LaNiO3 electrodes could be potential recording media for probe-based high-density data storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Cho, K. Fujimoto, Y. Hiranaga, Y. Wagatsuma, A. Onoe, K. Terabe and K. Kitamura, Nanotechnology 14 (2003) 637. doi:10.1088/0957-4484/14/6/314.

    Article  ADS  CAS  Google Scholar 

  2. L. Roytburd and S. P. Alpay, L. A. Bendersky, V. Nagarajan and R. Ramesh, J. Appl. Phys. 89 (2001) 553. doi:10.1063/1.1328781.

    Article  ADS  CAS  Google Scholar 

  3. C. B. Eom, R. B. Van Dover, Julia M. Phillips, D. J. Werder, J. H. Marshall, C. H. Chen, R. J. Cava, R. M. Fleming, and D. K. Fork, Appl. Phys. Lett. 63 (1993) 2570. doi:10.1063/1.110436.

    Article  ADS  CAS  Google Scholar 

  4. J. Ishida, T. Yamada, A. Sawabe, K. Okuwada, and K. Saito, Appl. Phys. Lett. 80 (2002) 467. doi:10.1063/1.1433912.

    Article  ADS  CAS  Google Scholar 

  5. H. Z. Jin and Jing Zhu, J. Appl. Phys. 92, (2002) 4594. doi:10.1063/1.1506193.

    Article  ADS  CAS  Google Scholar 

  6. H. Han, J. Zhong, S. Kotru, P. Padmini, X. Y. Song, and R. K. Pandey, Appl. Phys. Lett. 88 (2006) 092902. doi:10.1063/1.2180878.

    Article  ADS  Google Scholar 

  7. R. Ramesh, H. Gilchrist, T. Sands, V.G. Keramidas, R. Haakenaasen, D.K. Fork: Appl. Phys. Lett. 63, 3592 (1993) doi:10.1063/1.110106.

    Article  ADS  CAS  Google Scholar 

  8. R. Ramesh, W.K. Chan, B.Wilkens, H. Gilchrist, T. Sands, J.M. Tarascon, D.K. Fork, J. Lee, A. Sfari: Appl. Phys. Lett. 61, 1537 (1992). doi:10.1063/1.107488.

    Article  ADS  CAS  Google Scholar 

  9. R. Dat, D.J. Lichtenwalner, O. Auciello, A.I. Kingon: Appl. Phys. Lett. 64, 2673 (1994. doi:10.1063/1.111488.

    Article  ADS  CAS  Google Scholar 

  10. P. D. Hren, S. H. Rou, H. N. Al-Shareef, M. S. Ameen, O. Auciello, and A. I. Kingon, Integrated Ferroelectrics 2, 311 (1992). doi:10.1080/10584589208215751.

    Article  CAS  Google Scholar 

  11. P. J. Schorn, D. Brauhaus, U. Bottger, R. Waser, G. Beitel, N. Nagel, and R. Bruchhaus, J. Appl. Phys. 99 (2006) 114104. doi:10.1063/1.2200470.

    Article  ADS  Google Scholar 

  12. S. S. Kim, T. S. Kang, J. H. Je, Thin Solid Films 405 (2002) 117. doi:10.1016/S0040-6090(01)01735-7.

    Article  ADS  CAS  Google Scholar 

  13. W. B. Wu, K. H. Wong and C. L. Choy, J. Vac. Sci. Technol. A 18 (2000) 79. doi:10.1116/1.582121.

    Article  ADS  CAS  Google Scholar 

  14. C. Wang, M.H. Kryder, Phys. Scr. 78 (2008) 035601. doi:10.1088/0031-8949/78/03/035601.

    Article  ADS  Google Scholar 

  15. C. Wang, M. H. Kryder, J. Appl. Phys., 103, 064106 (2008). doi:10.1063/1.2899180.

    Article  ADS  Google Scholar 

  16. C. B. Sawyer and C. H. Tower, Phys. Rev. 35, (1930) 269. doi:10.1103/PhysRev.35.269.

    Article  ADS  CAS  Google Scholar 

  17. D. J. Johnson, D. T. Amm, E. Griswold, K. Sreenivas, G. Yi, and M. Sayer, Mater. Res. Soc. Symp. Proc. 200 (1990) 289.

    Google Scholar 

  18. H. M. Duiker, P. D. Beale, J. F. Scott, C. A. P. de Araujo, B. M. Melnick, J. D. Cuchiaro, and L. D. McMillan, J. Appl. Phys. 68 (1990) 5783. doi:10.1063/1.346948.

    Article  ADS  CAS  Google Scholar 

  19. M. S. Chen, T. B. Wu, J. M. Wu, Appl. Phys. Lett. 68 (1996) 1430. doi:10.1063/1.116103.

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Kryder, M.H. Low Fatigue in Epitaxial Pb(Zr0.2Ti0.8)O3 on Si Substrates with LaNiO3 Electrodes by RF Sputtering. J. Electron. Mater. 38, 1921–1925 (2009). https://doi.org/10.1007/s11664-009-0836-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0836-x

Keywords

Navigation