Journal of Electronic Materials

, Volume 38, Issue 8, pp 1548–1553 | Cite as

Growth of Thick Epitaxial CdTe Films by Close Space Sublimation

  • Q. Jiang
  • A. W. Brinkman
  • B. J. Cantwell
  • J. T. Mullins
  • Fabrice Dierre
  • A. Basu
  • P. Veeramani
  • P. Sellin
Article

This paper reports on a detailed study of the development of the close space sublimation method, which has been widely used in the preparation of polycrystalline CdTe/CdS solar cells, as an epitaxial method for the growth of thick CdTe single crystal films over 200 μm on GaAs and Ge substrates for high-energy radiation detectors. The resulting microscopic growth phenomena in the process are also discussed in this paper. High-quality single crystalline CdTe thick films were prepared with x-ray rocking curves full width at half maximum (FWHM) values, which were ∼100 arcsec on Ge substrates and 300 arcsec on GaAs substrates. The quality of thick films on Ge(100) showed a substantial improvement with nucleation in a Te-rich growth environment. No Te inclusions in the CdTe films grown on GaAs(211)B and Ge(100) were observed with IR transmission imaging. Photoluminescence of CdTe/Ge shows a large reduction in the 1.44 eV defect energy bands compared with films grown on GaAs substrates. The film resistivity is on the order of 1010 Ω cm, and the film displayed some sensitivity to alpha particles.

Key words

CdTe detector epitaxy thick film 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.J. Sellin and J. Vaitkus, Nucl. Instrum. Methods A557, 479 (2006).ADSGoogle Scholar
  2. 2.
    D. Bonnet, Thin Solid Films 361–362, 547 (2000). doi:10.1016/S0040-6090(99)00831-7 CrossRefGoogle Scholar
  3. 3.
    Q. Jiang, J.T. Mullins, B.J. Cantwell, A. Basu, and A.W. Brinkman, J. Cryst. Growth 310, 1664 (2008). doi:10.1016/j.jcrysgro.2007.12.043 CrossRefADSGoogle Scholar
  4. 4.
    H. Tatsuoka, H. Kuwabara, Y. Nakanishi, and H. Fujiyasu, Thin Solid Films 201, 59 (1991). doi:10.1016/0040-6090(91)90154-P CrossRefADSGoogle Scholar
  5. 5.
    S. Koh, T. Kondo, Y. Shiraki, and R. Ito, J. Cryst. Growth 227–228, 183 (2001). doi:10.1016/S0022-0248(01)00660-1 CrossRefGoogle Scholar
  6. 6.
    X. Yu, L. Scaccabarozzi, A.C. Lin, M.M. Fejer, and J.S. Harris, J. Cryst. Growth 301–302, 163 (2007). doi:10.1016/j.jcrysgro.2006.11.315 CrossRefGoogle Scholar
  7. 7.
    G. Tromson-Carli, G. Patriarchi, R. Druilhe, A. Lusson, Y. Marfaing, R. Triboulet, P.D. Brown, and A.W. Brinkman, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 16, 145 (1993). doi:10.1016/0921-5107(93)90031-H Google Scholar
  8. 8.
    Q. Jiang, J.T. Mullins, J. Toman, T.P. Hase, B.J. Cantwell, G. Lloyd, A. Basu, and A.W. Brinkman, J. Cryst. Growth 310, 1652(2008).doi:10.1016/j.jcrysgro.2007.11.171 CrossRefADSGoogle Scholar
  9. 9.
    J.P. Faurie, R. Sporken, Y.P. Chen, M.D. Lange, and S. Sivananthan, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 16, 51 (1993).Google Scholar
  10. 10.
    J.P. Zanatta, P. Duvaut, P. Ferret, A. Million, G. Destefanis, P. Rambaud, and C. Vannuffel, Appl. Phys. Lett. 71, 2984 (1997). doi:10.1063/1.120237 CrossRefADSGoogle Scholar
  11. 11.
    I. Bhat and W. Wang, Appl. Phys. Lett. 64, 566 (1994). doi:10.1063/1.111105 CrossRefADSGoogle Scholar
  12. 12.
    E. Bolotnikov, S. Awadalla, S. Babalolal, G.S. Camarda, H.␣Chen, Y. Cui, A. Hossain, H. Jackson, J. James, J. MacKenzie, G. Yang, and R.B. James (2008) Studies of the Extended Defects in CdZnTe Radiation Detectors. IEEE Room Temperature Semiconductor Detector Workshop, Dresden, 19–25 October.Google Scholar

Copyright information

© TMS 2009

Authors and Affiliations

  • Q. Jiang
    • 1
  • A. W. Brinkman
    • 1
  • B. J. Cantwell
    • 2
  • J. T. Mullins
    • 2
  • Fabrice Dierre
    • 2
  • A. Basu
    • 2
  • P. Veeramani
    • 3
  • P. Sellin
    • 3
  1. 1.Department of PhysicsDurham UniversityDurhamUK
  2. 2.KromekSedgefieldUK
  3. 3.Physics DepartmentUniversity of SurreyGuildfordUK

Personalised recommendations