Skip to main content
Log in

Effects of Ball-Milling Atmosphere on the Thermoelectric Properties of TAGS-85 Compounds

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Inspired by the high ZT value lately attained in Ar-protected ball-milled nanocrystalline p-BiSbTe bulk alloy, we report herein an investigation of the effects of ball-milling atmosphere on the thermoelectric (TE) properties of the traditional TE material (GeTe)85(AgSbTe2)15 (TAGS-85). TAGS-85 samples were prepared via a melting–quenching–annealing process, and then ball-milled in different atmospheres and subsequently densified using a spark plasma sintering technique. The Seebeck coefficient, electrical conductivity, thermal conductivity, and Hall coefficient were measured as a function of temperature from 10 K to 310 K. It was found that different ball-milling atmospheres, i.e., air, liquid N2 (LN2), and Ar, profoundly affected the TE properties. A state-of-the-art figure of merit ZT ≈ 0.30 was attained at 310 K in the Ar-ball milled sample. The results are discussed in terms of the carrier concentration, mobility, crystallinity, and the grain boundary scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M Rowe, CRC Handbook of Thermoelectrics (CRC, Boca Raton, FL, 1995)

    Google Scholar 

  2. T.M. Tritt, Semiconductors and Semimetals, Recent Trends in Thermoelectric Materials Research: Part One to Three (Academic, San Diego, CA, 2001) p. 69 to 71

    Google Scholar 

  3. X.B. Zhao, T J Zhu, X H Ji, Y H Zhang, J P Tu and X B Zhang, Appl. Phys. Lett. 86, 062111 (2005) doi:10.1063/1.1863440

    Article  ADS  Google Scholar 

  4. Y.Q. Cao, X.B. Zhao, T.J. Zhu, X. B. Zhang and J. P. Tu, Appl. Phys. Lett. 92(14), 3106(2008) doi:10.1063/1.2900960

    Google Scholar 

  5. [L. D. Hicks, M. S. Dresselhaus, Phys. Rev. B 47(19), 12727 (1993) doi:10.1103/PhysRevB.47.12727

    Article  ADS  CAS  Google Scholar 

  6. R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O’Quinn, Nature 413, 597 (2001) doi:10.1038/35098012

    Article  PubMed  ADS  CAS  Google Scholar 

  7. R. Venkatasubramanian, T. Colpitts and B. O’Quinn, Appl. Phys. Lett. 75, 1104 (1999) doi:10.1063/1.124610

    Article  ADS  CAS  Google Scholar 

  8. Y. M. Lin and M. S. Dresselhaus, Phys. Rev. B 68, 075304 (2003) doi:10.1103/PhysRevB.68.075304

    Article  ADS  Google Scholar 

  9. T. C. Harman, P. J. Taylor, M. P. Walsh, B. E. Laforge, Science 297, 2229 (2002) doi:10.1126/science.1072886

    Article  PubMed  ADS  CAS  Google Scholar 

  10. [W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, A Majumdar, Phys. Rev. Lett. 96, 045901 (2006) doi:10.1103/PhysRevLett.96.045901

    Article  PubMed  ADS  Google Scholar 

  11. B. Zhang, X. Ji, J. He, M. Terry. Tritt, Appl. Phys. Lett. 89, 163114 (2006) doi:10.1063/1.2363954

    Article  ADS  Google Scholar 

  12. E. Skrabek and D. Trimmer, U.S. patent no. 3945855 (1976).

  13. C.C. Christakudis, S.K. Plachkova, L.E. Shelimova, and E.S. Avilov, Proc. 8th International Conference on Thermoelectric Energy Conversion (Nany France, July 1989), p. 125.

  14. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, Z. Ren, Science 320, 634 (2008) doi:10.1126/science.1156446

    Article  PubMed  ADS  CAS  Google Scholar 

  15. A. L. Pope, R. T. Littleon IV, Terry M. Tritt, Rev. Sci. Instr. 72, 3129 (2001) doi:10.1063/1.1380390

    Article  ADS  CAS  Google Scholar 

  16. Bartosz M Zawilski, R. T. Littleon IV, Terry M. Tritt, Rev. Sci. Instrum. 72, 1770 (2001) doi:10.1063/1.134790

    Article  ADS  CAS  Google Scholar 

  17. S. H. Yang, T. J. Zhu, T. Sun, J. He, S. N. Zhang, X. B. Zhao, Nanotechnology, 19, 5707 (2008)

    Google Scholar 

  18. J. Bardeen, W. Shockley, Phys. Rev. 80, 72 (1950) doi:10.1103/PhysRev.80.72

    Article  MATH  ADS  CAS  MathSciNet  Google Scholar 

  19. B.C. Sales, D. Mandrus, B.C. Chakoumakos, V. Keppens, and J.R. Thompson, Phys. Rev. B 56, 15081 (1997). doi:10.1103/PhysRevB.56.15081

    Google Scholar 

Download references

Acknowledgements

The work is supported by the National ‘863’ Hi-tech. Program of China (2007AA03Z234), ‹973’ Program (2007CB607502) the Department of Energy Implementation program (#DE-FG02-04ER-46139), and the SC EPSCoR/Clemson University Cost Share.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. B. Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S.N., He, J., Ji, X.H. et al. Effects of Ball-Milling Atmosphere on the Thermoelectric Properties of TAGS-85 Compounds. J. Electron. Mater. 38, 1142–1147 (2009). https://doi.org/10.1007/s11664-009-0779-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0779-2

Keywords

Navigation