Skip to main content
Log in

Characterization of Dislocations in HgCdTe Heteroepitaxial Layers Using a New Substrate Removal Technique

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Dislocations are known to influence the electrical and optical properties of long-wavelength infrared (LWIR) HgCdTe detectors and have been shown to limit the performance of arrays fabricated on heteroepitaxial substrates. To help better understand dislocations in HgCdTe, a new method for preparing HgCdTe diagnostic epitaxial single-crystal samples by chemically removing the supporting CdZnTe substrate has been developed. Using this new sample preparation technique, the behavior of misfit and threading dislocations in HgCdTe epitaxial layers has been investigated by using a defect etch to reveal the dislocations present in the thin HgCdTe films. In most cases etch pits on the surface of the film are spatially correlated with etch pits on the bottom of the HgCdTe film. The small displacements of the related etch pits were used to obtain crystallographic information concerning the paths followed by threading dislocations on allowed slip planes in the HgCdTe crystal. In addition, transmission electron microscopy (TEM) is used to obtain more specific information regarding the Burgers vector of the dislocation. While this new sample preparation technique is useful for studying dislocations in HgCdTe epitaxial layers, it can also be used to study stress from ohmic contacts and passivation layers. The technique can be used for both liquid-phase epitaxy (LPE)- and molecular-beam epitaxy (MBE)-grown HgCdTe on CdZnTe substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. D. Edwall, J. Bajaj and E. R. Gertner, J. Vac. Sci. Technol. A Volume 8, Issue 2, page 1045, March (1990).

    Article  ADS  CAS  Google Scholar 

  2. K. Maruyama and K. Shinohara, J. Vac. Sci. Technol. A 7 (2), page 291, Mar/Apr (1989).

    Article  ADS  CAS  Google Scholar 

  3. S. Johnson, D. Rhiger, J. Rosbeck, J. Peterson, S. Taylor and M. Boyd, J. Vac. Sci. Technol. B 10 (4), page 1499, Jul/Aug (1992).

    Article  CAS  Google Scholar 

  4. T. Parodos, E. A. Fitzgerald, A. Caster, S. Tobin, J. Marciniec, J. Welsch, A. Hairston, P. Lamarre, J. Riendeau, B. Woodward, S. Hu, M. Reine, and P. LoVecchio., J Electron Mater, vol. 36, no. 8, page 1068, August (2007).

    Article  ADS  CAS  Google Scholar 

  5. R. List, J. Vac. Sci. Technol. B 10 (4), page 1651, Jul/Aug (1992).

    Article  CAS  Google Scholar 

  6. J. R. Yang, X. L. Cao, Y. F. Wei and L. He, J Electron Mater, vol. 37, no. 9, page 1241 August (2008).

    Article  ADS  CAS  Google Scholar 

  7. S. Tobin, E. Krueger, G. Pultz, M. Kestigian, K. Wong and P. Norton, J Electron Mater, Vol. 22, No. 8, page 959, (1993) doi:10.1007/BF02817510

    Article  ADS  CAS  Google Scholar 

  8. D. Walsh and M. Ray, U.S. patent 5,567,975 (1996).

  9. T. Schimert and S. Barnes, U.S. patent 5,580,795 (1996).

  10. M. Heimendahl, Material Science Series, translated by U. Wolff, Electron Microscopy of Materials an Introduction (Boston: Academic, 1980), p. 177, ISBN 0-12-725150-2.

  11. SPI Supplies and Structure Probe, Inc., SPI Diffraction Standards, TEM. http://www.2spi.com.

  12. P. Hirsch, Microscopy in Materials Science Series, Topics in Electron Diffraction and Microscopy of Materials (Philadelphia: Institute of Physics Publishing, 1999), p. 25, ISBN 0 7503 0538 X.

  13. L. Fu, N. Okamoto, M. Chi, N. Browning, H. Jung, and C. Grein, J. Appl. Phys. 104, 023104 (2008).

    Google Scholar 

  14. M. Haiml, M. Bruder, D. Eich, M. Finck, H. Lutz, T. Simon, J. Wendler, R. Wollrab and J. Ziegler, Proc. of SPIE vol. 6542, 65420F (2007) doi:10.1117/12.718671.

    Article  CAS  Google Scholar 

  15. A. Waczynski, P. Marshall, C. Marshall, R. Foltz, R. Kimble, S. Johnson, and R. Hill, Focal Plane Arrays for Space Telescopes II, ed. T. Grycewicz and C. Marshall, Proc. SPIE. 5902, 1 (2005)

  16. D. Redfern, C. Musca, J. Dell and L. Faraone, IEEE Trans Elec Dev, vol. 52. no. 10, page 2163 October (2005).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the U.S. Army for supporting this work through Contracts W15P7T-06-C-M002 and W15P7T-06-C-M006 and technical monitor Dr. Justin Markunas. Contributions from Mr. Fazal Huseni, BAE Systems and Mr. John Knowles, Microvision Laboratories are also acknowledged. The Evans Analytical Group is acknowledged for FIB and TEM work. Dr. Michael Carmody and EPIR are thanked for donating MBE samples. Professor Soumendra Basu of Boston University is acknowledged for helping with indexing of electron diffraction patterns.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lamarre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamarre, P., Fulk, C., D’Orsogna, D. et al. Characterization of Dislocations in HgCdTe Heteroepitaxial Layers Using a New Substrate Removal Technique. J. Electron. Mater. 38, 1746–1754 (2009). https://doi.org/10.1007/s11664-009-0771-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0771-x

Keywords

Navigation