Skip to main content
Log in

Effect of Intermetallic on Electromigration and Atomic Diffusion in Cu/SnAg3.0Cu0.5/Cu Joints: Experimental and First-Principles Study

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Electromigration phenomena in a one-dimensional Cu/SnAg3.0Cu0.5/Cu joint were investigated with current stressing. The special effect of intermetallic compound (IMC) layers on the formation of serious electromigration damage induced by nonuniform current density distribution was discussed based on experimental results. Meanwhile, hillocks were observed both at the anode and near the cathode of the joint, and they were described as the result of diffusion of atoms and compressive stress released along grain boundaries to the relatively free surface. Moreover, the diffusion behavior of Cu at the cathode was analyzed with the electromigration equation, and the stability of Ag atoms in the solder during electromigration was evaluated with a first-principles method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Y. Lee, K. N. Tu, S. M. Kao, and D. R. Frear, J. Appl. Phys. 89, 3189 (2001). doi: 10.1063/1.1342023.

    Article  ADS  CAS  Google Scholar 

  2. K. N. Tu, J. Appl. Phys. 94, 5451 (2003). doi: 10.1063/1.1611263.

    Article  ADS  CAS  Google Scholar 

  3. L. Y. Zhang, S. Q. Ou, J. Huang, K. N. Tu, S. Gee, and L. Nguyen, Appl. Phys. Lett. 88, 012106 (2006). doi: 10.1063/1.2158702.

    Article  ADS  Google Scholar 

  4. C. Y. Liu, J. T. Chen, Y. C. Chuang, L. Ke, and S. J. Wang, Appl. Phys. Lett. 90, 112114 (2007). doi: 10.1063/1.2714100.

    Article  ADS  Google Scholar 

  5. C. T. Lin, Y. C. Chuang, S. J. Wang, and C. Y. Liu, Appl. Phys. Lett. 89, 101906 (2006). doi:10.1063/1.2344857.

    Article  ADS  Google Scholar 

  6. K. N. Tu, Phys. Rev. B 49, 2030 (1994). doi:10.1103/PhysRevB.49.2030.

    Article  ADS  CAS  Google Scholar 

  7. S. H. Liu, Chih Chen, P. C. Liu, and T. Chou, J. Appl. Phys. 95, 7742 (2004). doi:10.1063/1.1712019.

    Article  ADS  CAS  Google Scholar 

  8. F. Y. Ouyang, K. Chen, K. N. Tu, and Y. S. Lai, Appl. Phys. Lett. 91, 231919 (2007). doi:10.1063/1.2822446.

    Article  ADS  Google Scholar 

  9. H. Y. Hsiao and C. Chen, Appl. Phys. Lett. 90, 152105 (2007). doi:10.1063/1.2721136.

    Article  ADS  Google Scholar 

  10. C. H. Passow, J. H. Chun and T. Ando, Metallurigical Transactions A 24A, 1187 (1993). doi:10.1007/BF02657250.

    ADS  CAS  Google Scholar 

  11. F. Ren, J. W. Nah, K. N. Tu, B. Xiong, L. Xu and J.H.L. Pang, Appl. Phys. Lett. 89, 141914 (2006). doi:10.1063/1.2358113.

    Article  ADS  Google Scholar 

  12. J. A. White and D. M. Bird, Phys. Rev. B 50, 4954 (1994). doi:10.1103/PhysRevB.50.4954.

    Article  ADS  CAS  Google Scholar 

  13. J. P. Perdew, K. Burke, and M. Enzerhof, Phys. Rev. Lett. 77, 3865 (1996). doi:10.1103/PhysRevLett.77.3865.

    Article  PubMed  ADS  CAS  Google Scholar 

  14. T. H. Fischer and J. AlmlÖf, J. Phys. Chem. 96, 9768 (1992). doi:10.1021/j100203a036.

    Article  CAS  Google Scholar 

  15. G. Henkelman (Ph.D. thesis, Faculty of Chemistry, The University of Washington, 2001).

  16. C. S. Barrett and T. B. Massalski, Structure of Metals (McGraw-Hill, New York, 1966).

    Google Scholar 

  17. C. W. Fairhurst and J. Cohen, Acta Crystallogr. B: Struct. Crystallogr. Cryst. Chem. 38, 598 (1982). doi:10.1107/S056774088200346X.

    Article  Google Scholar 

  18. C. Yu and H. Lu, J. Appl. Phys. 102, 054904 (2007). doi:10.1063/1.2777192.

    Article  ADS  Google Scholar 

  19. K. N. Chiang, C. C. Lee, C. C. Lee, and K. M. Chen, Appl. Phys. Lett. 88, 072102 (2006). doi:10.1063/1.2173710.

    Article  ADS  Google Scholar 

  20. S. M. Kuo and K. L. Lin, J. Electron. Mater. 36, 1378 (2007). doi:10.1007/s11664-007-0209-2.

    Article  ADS  CAS  Google Scholar 

  21. T. Y. Lee, K. N. Tu and D. R. Frear, J. Appl. Phys. 90, 4502 (2001). doi:10.1063/1.1400096.

    Article  ADS  CAS  Google Scholar 

  22. L. Zhang, Z. G. Wang and J. K. Shang, Script. Mater. 56, 381 (2007). doi:10.1016/j.scriptamat.2006.10.043.

    Article  CAS  Google Scholar 

  23. C. Y. Liu, Lin Ke, Y. C. Chuang, and S. J. Wang, J. Appl. Phys. 100, 083702 (2006). doi:10.1063/1.2357860.

    Article  ADS  Google Scholar 

  24. C. Wolverton, Acta. Mater. 55, 5867 (2007). doi:10.1016/j.actamat.2007.06.039.

    Article  CAS  Google Scholar 

  25. K. S. Kim, S. H. Huh, and K. Suganuma, Mater. Sci. Eng. A 333, 106 (2002). doi:10.1016/S0921-5093(01)01828-7.

    Article  Google Scholar 

  26. F. H. Huang and H. B. Huntington, Phys. Rev. B 9, 1479 (1974). doi:10.1103/PhysRevB.9.1479.

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, W., Liu, L., Li, B. et al. Effect of Intermetallic on Electromigration and Atomic Diffusion in Cu/SnAg3.0Cu0.5/Cu Joints: Experimental and First-Principles Study. J. Electron. Mater. 38, 866–872 (2009). https://doi.org/10.1007/s11664-009-0760-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0760-0

Keywords

Navigation