Skip to main content

Ab Initio Studies of Hydrogen Defects in CdTe

Abstract

Using first-principles calculations based on density functional theory, we have investigated the nature of H defects in CdTe. The formation energy calculations indicate that the ground state position of the H inside the CdTe lattice depends on charge state: the lowest energy position for H0 and H+ is at the bond center site, while H prefers the tetrahedral interstitial site with Cd nearest neighbors (TCd). We find that H in CdTe acts as an amphoteric impurity. In p-type samples, H is in a positive charge state, acting as a donor to neutralize the free holes in the valence band, and in n-type samples H acquires an electron, compensating the donors in the sample.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    T. E. Schlesinger and R. B. James, Semiconductors for Room Temperature Nuclear Detector Applications, Semiconductors and Semimetals (Academic Press, San Diego, 1995) Vol. 43

    Google Scholar 

  2. 2.

    C. S. Szeles, phys. stat. sol. b 241, 783 (2004)

    Article  ADS  Google Scholar 

  3. 3.

    A. E. Bolotnikov, G. S. Camarda, G. A. Carini, M. Fiederle, L. Li, D. S. McGregor, W. McNeil, G. W. Wright, and R. B. James, IEEE Trans. Nucl. Sci. 53, 607 (2006). doi:10.1109/TNS.2006.871509

    Article  ADS  CAS  Google Scholar 

  4. 4.

    G. A. Carini, A. E. Bolotnikov, G. S. Camarda, G. W. Wright, R. B. James, and L. Li, Appl. Phys. Lett. 88, 143515 (2006). doi:10.1063/1.2189912

    Article  ADS  CAS  Google Scholar 

  5. 5.

    G. Koley, J. Liu and K. C. Mandal, Appl. Phys. Lett. 90, 102121 (2007). doi:10.1063/1.2712496

    Article  ADS  CAS  Google Scholar 

  6. 6.

    K. C. Mandal, S. H. Kang, M. Choi, A. Kargar, M. J. Harrison, D. S. McGregor, A. E. Bolotnikov, G. A. Carini, C. G. Camarda, and R. B. James, IEEE Trans. Nucl. Sci. 54, 802 (2007). doi:10.1109/TNS.2007.902371

    Article  ADS  CAS  Google Scholar 

  7. 7.

    K. C. Mandal, S. H. Kang, M. Choi, J. Wei, L. Zheng, H. Zhang, G. E. Jellison, M. Groza, and A. Burger, J. Electron. Mater. 36, 1013 (2007). doi:10.1007/s11664-007-0164-y

    Article  ADS  CAS  Google Scholar 

  8. 8.

    C. S. Szeles, Y. Y. Shan, K. G. Lynn, and A. R. Moodenbaugh, Phys. Rev. B 55, 6945 (1996). doi:10.1103/PhysRevB.55.6945

    Article  ADS  Google Scholar 

  9. 9.

    N. Krsmanovic, K. G. Lynn, M. H. Weber, R. Tjossem, T. H. Gessmann, C. S. Szeles, E. E. Eissler, J. P. Flint, and H. L. Glass, Phys. Rev. B 62, R16279 (2000). doi:10.1103/PhysRevB.62.R16279

    Article  ADS  CAS  Google Scholar 

  10. 10.

    S. A. Awallada, A. H. Hunt, K. G. Lynn, H. Glass, C. S. Szeles, and S.-H. Wei, Phys. Rev. B 69, 075210 (2004). doi:10.1103/PhysRevB.69.075210

    Article  ADS  CAS  Google Scholar 

  11. 11.

    S. A. Awallada, K. G. Lynn, S.-H. Wei, and Cs. Szeles, Phys. Rev. B 70, 245213 (2004). doi:10.1103/PhysRevB.70.245213

    Article  ADS  CAS  Google Scholar 

  12. 12.

    Q. Li, W. Jie, L. Fu, G. Yang, G. Zha, T. Wang, and D. Zeng, J. Appl. Phys. 100, 013518 (2006). doi:10.1063/1.2213155

    Google Scholar 

  13. 13.

    S.-H Wei and S. B. Zhang, Phys. Rev. B 66, 155211 (2002). doi:10.1103/PhysRevB.66.155211

    Article  ADS  CAS  Google Scholar 

  14. 14.

    Y.-C. Chang, R. B. James, and J. W. Davenport, Phys. Rev. B 73, 035211 (2006). doi:10.1103/PhysRevB.73.035211

    Article  ADS  CAS  Google Scholar 

  15. 15.

    M.-H. Du, H. Takenaka and D. J. Singh, Phys. Rev. B 77, 094122 (2008). doi:10.1103/PhysRevB.77.094122

    Article  ADS  CAS  Google Scholar 

  16. 16.

    J. I. Pankove and N. M. Johnson, Hydrogen in Semiconductors, Semiconductors and Semimetals (Academic Press, Boston, 1991) Vol. 34

    Google Scholar 

  17. 17.

    C. G. Van de Walle, Y. Bar-Yam, and S. T. Pantelides, Phys. Rev. Lett. 60, 2761 (1988). doi:10.1103/PhysRevLett.60.2761

    PubMed  Article  ADS  Google Scholar 

  18. 18.

    C.G. Van de Walle, P. J. H. Denteneer, Y. Bar-Yam, S. T. Pantelides, Phys. Rev. B 39, 10791 (1989). doi:10.1103/PhysRevB.39.10791

    Article  ADS  CAS  Google Scholar 

  19. 19.

    C. Herring, N. M. Johnson, and C. G. Van de Walle, Phys. Rev. B 64, 125209 (2001). doi:10.1103/PhysRevB.64.125209

    Article  ADS  CAS  Google Scholar 

  20. 20.

    S. Limpijumnong and C. G. VandeWalle, phys. stat. sol. b 228, 303 (2001).

    Article  ADS  CAS  Google Scholar 

  21. 21.

    C. G. VandeWalle, Phys. Rev. Lett. 85, 1012 (2000). doi:10.1103/PhysRevLett.85.1012

    Article  ADS  Google Scholar 

  22. 22.

    C. G. VandeWalle and J. Neugebauer, Nature 423, 626 (2003). doi:10.1038/nature01665

    PubMed  Article  ADS  CAS  Google Scholar 

  23. 23.

    A. Janotti and C. G. VandeWalle, Nature Materials 6, 44 (2007). doi:10.1038/nmat1795

    PubMed  Article  ADS  CAS  Google Scholar 

  24. 24.

    S. Shitharaman, R. Raman, L. Durai, S. Pal, M. Gautam, A. Nagpal, S. Kumar, S. N. Chatterjee, and S. C. Gupta, J. Cryst. Growth 285, 318 (2005). doi:10.1016/j.jcrysgro.2005.08.038

    Article  ADS  CAS  Google Scholar 

  25. 25.

    J. Polit, A. Kisiel, A. Mycielski, A. Marcelli, E. Sheregii, J. Cebulski, M. Piccinini, M. Cestelli Guidi, B. V. Robouch, and A. Nucara, phys. stat. sol. (c) 2, 1147 (2005)

    Article  CAS  Google Scholar 

  26. 26.

    P. Zajdel, A. Kisiel, J. Polit, B. V. Robouch, E. M. Sheregii, J. Warczewski, J. Cebulski, E. Burattini, A. Marcelli, M. Cestelli Guidi, M. Piccinini, and A. Mycielski, J. Alloys Compd. 426, 12 (2006). doi:10.1016/j.jallcom.2006.02.004

    Article  CAS  Google Scholar 

  27. 27.

    J. Polit, E. M. Sheregii, J. Cebulski, B. V. Robouch, A. Marcelli, M. CestelliGuidi, M. Piccinini, A. Kisiel, E. Burattini, and A. Mycielski, J. Appl. Phys. 100, 013521 (2006). doi:10.1063/1.2211368

    Article  ADS  CAS  Google Scholar 

  28. 28.

    J. Cebulski, E. M. Sheregii, J. Polit, A. Marcelli, B. Robouch, M. CastelliGuidi, M. Piccinini, and A. Kisiel, phys. stat. sol. c 4, 1462 (2007).

    Article  CAS  Google Scholar 

  29. 29.

    P. Alberto, V. J. B. Torres, J. Coutinho, and P. R. Briddon, Physica B 376-377, 775 (2006). doi:10.1016/j.physb.2005.12.194

    Article  CAS  Google Scholar 

  30. 30.

    J. P. Perdew, K. Burke, and M. Ernzerhof Phys. Rev. Lett. 77, 3865 (1996). doi:10.1103/PhysRevLett.77.3865

    PubMed  Article  ADS  CAS  Google Scholar 

  31. 31.

    D. M. Ceperley and B. I. Adler, Phys. Rev. Lett. 45, 566 (1980). doi:10.1103/PhysRevLett.45.566

    Article  ADS  CAS  Google Scholar 

  32. 32.

    P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). doi:10.1103/PhysRevB.50.17953

    Article  ADS  Google Scholar 

  33. 33.

    G. Kresse and D. Joubert, ibid. 59, 1758 (1999).

    Article  ADS  CAS  Google Scholar 

  34. 34.

    G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  ADS  CAS  Google Scholar 

  35. 35.

    G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994)

    Article  ADS  CAS  Google Scholar 

  36. 36.

    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Google Scholar 

  37. 37.

    G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). doi:10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  38. 38.

    S. B. Zhang and J. E. Northrup, Phys. Rev. Lett. 67, 2339 (1991). doi:10.1103/PhysRevLett.67.2339

    PubMed  Article  ADS  CAS  Google Scholar 

  39. 39.

    S. B. Zhang, J. Phys.: Condens. Matter 14, R881 (2002). doi:10.1088/0953-8984/14/34/201

    Article  ADS  CAS  Google Scholar 

  40. 40.

    D. R. Lide, CRC Handbook of Chemistry and Physics, 88th edition (CRC Press/Taylor and Francis, Boca Raton, Fl, 2008).

    Google Scholar 

  41. 41.

    S. Goettig and C. G. Morgan-Pond, Phys. Rev. B 42, 11743 (1990). doi:10.1103/PhysRevB.42.11743

    Article  ADS  CAS  Google Scholar 

  42. 42.

    S. Lany, V. Ostheimer, H. Wolf, and Th. Wichert, Physica B 308, 958 (2001). doi:10.1016/S0921-4526(01)00841-9

    Article  ADS  Google Scholar 

  43. 43.

    O. Madelung, Semiconductors:Data Handbook, 3rd edition (Springer, Berlin, 2004).

    Google Scholar 

  44. 44.

    C. Stampfl and C. G. VandeWalle, Phys. Rev. B 65, 155212 (2002). doi:10.1103/PhysRevB.65.155212

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zs. Rak.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rak, Z., Mahanti, S.D. & Mandal, K.C. Ab Initio Studies of Hydrogen Defects in CdTe. Journal of Elec Materi 38, 1539–1547 (2009). https://doi.org/10.1007/s11664-009-0751-1

Download citation

Keywords

  • Electronic structure
  • hydrogen in CdTe
  • defect formation energy
  • DFT