Skip to main content
Log in

Surface Wettability of Nanostructured Zinc Oxide Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) nanograin and nanorod films were prepared by magnetron sputter deposition and an aqueous solution growth method. Their surface wettability was studied in relation to their surface morphologies. While the surfaces of both films were hydrophobic, the nanorod films exhibited higher surface hydrophobicity. A superhydrophobic surface was obtained on a ZnO nanorod film with a water contact angle of 151 deg. Results have shown that their surface wettability was influenced by the morphology of ZnO nanostructures, including the grain size, the length, and density of nanorods. Both types of ZnO films showed switchable wettability under ultraviolet irradiation and dark storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.J. Feng, and L. Jiang. Adv. Mate. 18, 3063 (2006). doi:10.1002/adma.200501961

    Article  CAS  Google Scholar 

  2. C. Neinhuis, and W. Barthlott. Ann. Bot. 79, 667 (1997). doi:10.1006/anbo.1997.0400

    Article  Google Scholar 

  3. A. Nakajima, K. Hashimoto, and T. Watanabe. Langmuir 16, 7044 (2000). doi:10.1021/la000155k

    Article  CAS  Google Scholar 

  4. X.H. Hou, F. Zhou, B. Yu, and W.M. Liu. Mater. Sci. Eng. A-Struct. 452–453, 732(2007).

    Article  Google Scholar 

  5. S.M. Lee, H·S. Lee, D.S. Kim, and T.H. Kwon. Surf. Coat. Tech. 201, 553 (2006). doi:10.1016/j.surfcoat.2005.12.006

    Article  CAS  Google Scholar 

  6. M.L. Ma, and R.M. Hill. Curr. Opin. Colloid Interface Sci. 11, 193 (2006). doi:10.1016/j.cocis.2006.06.002

    Article  CAS  Google Scholar 

  7. X.J. Feng, L. Feng, M.H. Jin, J. Zhai, L. Jiang, and D.B. Zhu. J. Am. Chem. Soc. 126, 62(2004). doi:10.1021/ja038636o

    Article  PubMed  CAS  Google Scholar 

  8. Z. Zhang, H. Chen, J. Zhong, Y. Chen, and Y. Lu. J. Electron. Mater. 36, 895(2007). doi:10.1007/s11664-007-0126-4

    Article  ADS  CAS  Google Scholar 

  9. R.D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, and K. Hashimoto. J. Phys. Chem. B 105, 1984 (2001). doi:10.1021/jp002525j

    Article  CAS  Google Scholar 

  10. S. Karuppuchamy, and J.M. Jeong. Mater. Chem. Phys. 93, 251(2005). doi:10.1016/j.matchemphys.2005.04.015

    Article  CAS  Google Scholar 

  11. H. Liu, L. Feng, J. Zhai, L. Jiang, and D.B. Zhu. Langmuir 20, 5659 (2004). doi:10.1021/la036280o

    Article  PubMed  CAS  Google Scholar 

  12. H·S. Lim, D. Kwak, D.Y. Lee, S.G. Lee, and K. Cho. J. Am. Chem. Soc. 129, 4128 (2007). doi:10.1021/ja0692579

    Article  PubMed  CAS  Google Scholar 

  13. Y. Liu, L. Mu, B·H. Liu, and J.L. Kong. Chem. Eur. J. 11, 2622 (2005). doi:10.1002/chem.200400931

    Article  CAS  Google Scholar 

  14. R. Blossey. Nat. Mater. 2, 301 (2003). doi:10.1038/nmat856

    Article  PubMed  ADS  CAS  Google Scholar 

  15. Z.L. Wang. Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications (London: Elsevier, 2006), Chapter 10.

    Google Scholar 

  16. Z.L. Wang. Annu. Rev. Phys. Chem. 55, 159 (2004). doi:10.1146/annurev.physchem.55.091602.094416

    Article  PubMed  CAS  Google Scholar 

  17. D.C. Look. J. Electron. Mater. 35, 1299 (2006). doi:10.1007/s11664-006-0258-y

    Article  ADS  CAS  Google Scholar 

  18. H·H. Chen, A.D. Pasquier, G. Saraf, J. Zhong, and Y.C. Lu, Semicond. Sci. Technol. 23, 045004 (2008). doi:10.1088/0268-1242/23/4/045004

    Article  ADS  Google Scholar 

  19. J.L. Zhang, W·H. Huang, and Y.C. Han. Langmuir 22, 2946 (2006). doi:10.1021/la053428q

    Article  PubMed  CAS  Google Scholar 

  20. Y. Li, W·P. Cai, G.T. Duan, B.Q. Cao, F.Q. Sun, and F. Lu. J. Colloid Interface Sci. 287, 634 (2005). doi:10.1016/j.jcis.2005.02.010

    Article  PubMed  CAS  Google Scholar 

  21. W. Gao, and Z.W. Li. Ceram. Int. 30, 1155 (2004). doi:10.1016/j.ceramint.2003.12.197

    Article  CAS  Google Scholar 

  22. X.D. Yan, Z.W. Li, R.Q. Chen, and W. Gao. Cryst. Growth Des. 8, 2406 (2008). doi:10.1021/cg7012599

    Article  CAS  Google Scholar 

  23. R.N. Wenzel. Ind. Eng. Chem. Res. 28, 988 (1936). doi:10.1021/ie50320a024

    Article  CAS  Google Scholar 

  24. A.B.D. Cassie, and S. Baxter. Trans. Faraday Soc. 40, 546 (1944). doi:10.1039/tf9444000546

    Article  CAS  Google Scholar 

  25. H. Nakae, R. Inui, Y. Hirata, and H. Saito. Acta Mater. 46, 2313 (1998). doi:10.1016/S1359-6454(97)00387-X

    Article  CAS  Google Scholar 

  26. Z. Yoshimitsu, A. Nakajima, T. Watanabe, and K. Hashimoto. Langmuir 18, 5818 (2002). doi:10.1021/la020088p

    Article  CAS  Google Scholar 

  27. B. Bhushan, Y.C. Jung. Ultramicroscopy 107, 1033 (2007). doi:10.1016/j.ultramic.2007.05.002

    Article  PubMed  CAS  Google Scholar 

  28. L.L. Yan, K. Wang, J.S. Wu, and L. Ye. Colloid Surface A 296, 123 (2007). doi:10.1016/j.colsurfa.2006.09.034

    Article  CAS  Google Scholar 

  29. B. He, N.A. Patankar, and J. Lee. Langmuir 19, 4999(2003). doi:10.1021/la0268348

    Article  CAS  Google Scholar 

  30. A. Nakajima, K. Hashimoto, and T. Watanabe. Langmuir 16, 7044 (2000) doi:10.1021/la000155k

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, J., Gao, W. Surface Wettability of Nanostructured Zinc Oxide Films. J. Electron. Mater. 38, 601–608 (2009). https://doi.org/10.1007/s11664-008-0615-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-008-0615-0

Keywords

Navigation