Skip to main content

Computational Study on the Microstructural Evolution and the Change of Electrical Resistivity of Sintered Materials


The change of electrical resistivity of materials during sintering has been investigated. The evolution of two-dimensional microstructures during sintering was evaluated using Monte Carlo simulation featuring neck formation, grain growth, and contraction of the powder compacts. The overall electrical resistivity of the sintered microstructure, calculated by Kirchhoff’s first law, was related to the microstructure development during sintering, depending on microstructural parameters such as size and distribution of grains and pores. The solid-state sintering process of monosized particles was divided into three regimes: neck formation, densification, and grain growth. The resistivity dropped significantly at the very initial stage due to neck formation, and decreased slowly as pores were annihilated, while it remained almost unchanged after complete pore removal. For the sintering of randomly packed random-sized particles, the electrical resistivity dropped at the initial stage due to the neck formation, and then continuously decreased by a combined effect of compact densification and grain growth.

This is a preview of subscription content, access via your institution.


  1. M. Barsoum, Fundamentals of Ceramics (McGraw-Hill, 1997).

  2. H. Kishi, Y. Mizuno, H. Chazono. Jpn. J. Appl. Phys. 42, 1 (2003) doi:10.1143/JJAP.42.1.

    Article  ADS  CAS  Google Scholar 

  3. R. Ueyama, T. Ueyama, K. Koumoto, K. Kuribayashi. Trans. Mater. Res. Soc. Jpn. 27, 13 (2002).

    CAS  Google Scholar 

  4. N.P. Brandon. Mater. Sci. Forum 539–543, 20 (2007).

    Article  Google Scholar 

  5. H.C. Jung, S.-H. Cho, J.W. Joung, Y.-S. Oh. J. Electron. Mater. 36, 1211 (2007) doi:10.1007/s11664-007-0194-5.

    Article  ADS  CAS  Google Scholar 

  6. H.-H. Lee, K.-S. Chou, K.-C. Huang. Nanotechnology 16, 2436 (2005) doi:10.1088/0957-4484/16/10/074.

    Article  ADS  CAS  Google Scholar 

  7. T. Kawase, T. Shimoda, C. Newsome, H. Sirringhaus, R.H. Friend. Thin Solid Films 438–439, 279 (2003) doi:10.1016/S0040-6090(03)00801-0.

    Article  CAS  Google Scholar 

  8. J.-W. Park, S.-G. Baek. Scr. Mater. 55, 1139 (2006) doi:10.1016/j.scriptamat.2006.08.032.

    Article  CAS  Google Scholar 

  9. E.A. Olevsky, V. Tikare, T. Garino. J. Am. Ceram. Soc. 89, 1914 (2006) doi:10.1111/j.1551-2916.2006.01054.x.

    Article  CAS  Google Scholar 

  10. M. Braginsky, V. Tikare, E. Olevsky. Int. J. Solids Struct. 42, 621 (2005) doi:10.1016/j.ijsolstr.2004.06.022.

    Article  MATH  Google Scholar 

  11. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.N. Teller, E. Teller. J. Chem. Phys. 21, 1087 (1953) doi:10.1063/1.1699114.

    Article  ADS  CAS  Google Scholar 

  12. M.P. Anderson, S.J. Srolovitz, G.S. Grest, P.S. Sahni. Acta Metall. 32, 783 (1984) doi:10.1016/0001-6160(84)90151-2.

    Article  CAS  Google Scholar 

  13. G.N. Hassold, I.-W. Chen, D.J. Srolovitz. J. Am. Ceram. Soc. 73, 2857 (1990) doi:10.1111/j.1151-2916.1990.tb06686.x.

    Article  CAS  Google Scholar 

  14. V. Tikare, E.A. Holm. J. Am. Ceram. Soc. 81, 480 (1998).

    Article  CAS  Google Scholar 

  15. C. Ciobanu, Y. Liu, Y. Wang, and B. R. Patton. J. Electroceram. 3, 17 (1999).

    Article  CAS  Google Scholar 

  16. S.-H. Choi, J.-K. Jung, I. Kim, H.C. Jung, J. Joung, Y.C. Joo. Kor. J. Mater. Res. 17, 453 (2007).

    Article  CAS  Google Scholar 

  17. B.R. Patterson, Y. Liu, J.A. Griffin. Metall. Trans. A 21, 2137 (1990) doi:10.1007/BF02647873.

    Article  Google Scholar 

  18. J.-S. Lee, Y.-S. Kang. Scr. Mater. 44, 1591 (2001) doi:10.1016/S1359-6462(01)00780-1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hee-Soo Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, HS., Park, JW. Computational Study on the Microstructural Evolution and the Change of Electrical Resistivity of Sintered Materials. J. Electron. Mater. 38, 475–481 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Sintering
  • electrical resistivity
  • Monte Carlo simulation