Journal of Electronic Materials

, Volume 38, Issue 6, pp 718–724

Temperature Dependence of Epitaxial Graphene Formation on SiC(0001)

  • Luxmi
  • Shu Nie
  • P.J. Fisher
  • R.M. Feenstra
  • Gong Gu
  • Yugang Sun
Open Access
Article

Abstract

The formation of epitaxial graphene on SiC(0001) surfaces is studied using atomic force microscopy, Auger electron spectroscopy, electron diffraction, Raman spectroscopy, and electrical measurements. Starting from hydrogen-annealed surfaces, graphene formation by vacuum annealing is observed to begin at about 1150°C, with the overall step-terrace arrangement of the surface being preserved but with significant roughness (pit formation) on the terraces. At higher temperatures near 1250°C, the step morphology changes, with the terraces becoming more compact. At 1350°C and above, the surface morphology changes into relatively large flat terraces separated by step bunches. Features believed to arise from grain boundaries in the graphene are resolved on the terraces, as are fainter features attributed to atoms at the buried graphene/SiC interface.

Keywords

Graphene silicon carbide semiconductor field-effect transistor 

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov. Science 306, 666 (2004) doi:10.1126/science.1102896 PubMedCrossRefADSGoogle Scholar
  2. 2.
    W.A. de Heer, C. Berger, X. Wu, P.N. First, E.H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M.L. Sadowski, M. Potemski, and G. Martinez. Solid State Commun. 143, 92 (2007) doi:10.1016/j.ssc.2007.04.023 CrossRefADSGoogle Scholar
  3. 3.
    J. Kedzierski, P.-L. Hsu, P. Healey, P. Wyatt, C.L. Keast, M. Sprinkle, C. Berger, and W.A. de Heer. IEEE Trans. Electron. Dev. 55, 2078 (2008) doi:10.1109/TED.2008.926593 CrossRefADSGoogle Scholar
  4. 4.
    Y.Q. Wu, P.D. Ye, M.A. Capano, Y. Xuan, Y. Sui, M. Qi, J.A. Cooper, T. Shen, D. Pandey, G. Prakash, and R. Reifenberger. Appl. Phys. Lett. 92, 092102 (2008) doi:10.1063/1.2889959 CrossRefADSGoogle Scholar
  5. 5.
    G. Gu, S. Nie, R.M. Feenstra, R.P. Devaty, W.J. Choyke, W.K. Chan, and M.G. Kane. Appl. Phys. Lett. 90, 253507 (2007) doi:10.1063/1.2749839 CrossRefADSGoogle Scholar
  6. 6.
    J.A. Northrup, J. Neugebauer, Phys. Rev. B 57, 4230 (1998) doi:10.1103/PhysRevB.57.R4230 CrossRefADSGoogle Scholar
  7. 7.
    S. Mroczkowski, D. Lichtman. Surf. Sci. 131, 159 (1983) doi:10.1016/0039–6028(83)90125-5 CrossRefGoogle Scholar
  8. 8.
    P. Mårtensson, F. Owman, and L.I. Johansson, Phys. Status Solidi 202, 501 (1997). doi:10.1002/1521-3951(199707)202:1<501::AID-PSSB501>3.0.CO;2-HCrossRefGoogle Scholar
  9. 9.
    W. Chen, H. Xu, L. Liu, X. Gao, D. Qi, G. Peng, S.C. Tan, Y. Feng, K.P. Loh, and A.T.S. Wee. Surf. Sci. 596, 176 (2005)ADSGoogle Scholar
  10. 10.
    J.B. Hannon, R.M. Tromp. Phys. Rev. B 77, 241404 (2008) doi:10.1103/PhysRevB.77.241404 CrossRefADSGoogle Scholar
  11. 11.
    11. V. Ramachandran, M.F. Brady, A.R. Smith, R.M. Feenstra, and D.W. Greve. J. Electron. Mater. 27, 308 (1997) doi:10.1007/s11664-998-0406-7 CrossRefADSGoogle Scholar
  12. 12.
    Although the morphology of Fig. 3a is quite similar to that seen in Ref. 5, the annealing temperature reported there is higher (1300°C) and graphene thickness greater (1.5 ML) than the present work. It should be noted however that the starting surface in Ref. 5 is different, since the sample was transferred through air between H-etching and graphitization and also a small amount of surface metal contamination was present. Additionally, some uncertainty in temperature determination occurs in both experiments.Google Scholar
  13. 13.
    I. Forbeaux, J.-M. Themlin, J.-M. Debever. Phys. Rev. B 58, 16396 (1998) doi:10.1103/PhysRevB.58.16396 CrossRefADSGoogle Scholar
  14. 14.
    C. Riedl, U. Starke, J. Bernhardt, M. Franke, K. Heinz. Phys. Rev. B 76, 245406 (2007) doi:10.1103/PhysRevB.76.245406 CrossRefADSGoogle Scholar
  15. 15.
    15. T.A. Witten, L.M. Sander. Phys. Rev. Lett. 47, 1400 (1981) doi:10.1103/PhysRevLett.47.1400 CrossRefADSGoogle Scholar
  16. 16.
    16. S.W. Poon, W. Chen, E.S. Tok, A.T.S. Wee. Appl. Phys. Lett. 92, 104102 (2008) doi:10.1063/1.2883941 CrossRefADSGoogle Scholar
  17. 17.
    S. Nie (Ph.D. Thesis, Department of Physics, Carnegie Mellon University, 2007).Google Scholar
  18. 18.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim. Phys. Rev. Lett. 97, 187401 (2006) doi:10.1103/PhysRevLett.97.187401 PubMedCrossRefADSGoogle Scholar
  19. 19.
    Z.H. Ni, W. Chen, X.F. Fan, J.L. Kuo, T. Yu, A.T.S. Wee, and Z.X. Shen. Rev. B 77, 115416 (2008) doi:10.1103/PhysRevB.77.115416 CrossRefADSGoogle Scholar
  20. 20.
    J.C. Burton, L. Sun, F.H. Long, Z.C. Feng, I.T. Ferguson. Phys. Rev. B 59, 7282 (1999) doi:10.1103/PhysRevB.59.7282 CrossRefADSGoogle Scholar
  21. 21.
    D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, , and D. Wirtz. Nano Lett. 7, 238 (2007) doi:10.1021/nl061702a PubMedCrossRefADSGoogle Scholar
  22. 22.
    G.M. Rutter, N.P. Guisinger, J.N. Crain, E.A.A. Jarvis, M.D. Stiles, T. Li, P.N. First, and J.A. Stroscio. Phys. Rev. B 76, 235416 (2007) doi:10.1103/PhysRevB.76.235416 CrossRefADSGoogle Scholar
  23. 23.
    S. Nie and R.M. Feenstra, J. Vac. Sci. Technol. B, submittedGoogle Scholar

Copyright information

© TMS 2008

Authors and Affiliations

  • Luxmi
    • 1
  • Shu Nie
    • 1
  • P.J. Fisher
    • 1
  • R.M. Feenstra
    • 1
  • Gong Gu
    • 2
  • Yugang Sun
    • 3
  1. 1.Department of PhysicsCarnegie Mellon UniversityPittsburghUSA
  2. 2.Sarnoff CorporationPrincetonUSA
  3. 3.Center for Nanoscale MaterialsArgonne National LaboratoryArgonneUSA

Personalised recommendations