Skip to main content
Log in

Enhancement of Spin–Orbit Interaction by Bandgap Engineering in InAs-Based Heterostructures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

We investigated Rashba spin–orbit interaction in various InAs-based heterostructures to evaluate the relative significance of the electric field in the quantum wells (QWs) and at the interfaces. Test structures were designed in such a way that the peak of the electron wave function was located on the abrupt band discontinuity at the front end of the main channel, whereas a control sample had no band discontinuity in the middle of the QW. The Rashba coefficient obtained for the test structures was almost double that of the control sample. Significant contribution of the electric field at the band discontinuity was verified by k · p calculation. Bandgap engineering was shown to be effective for obtaining an increased Rashba coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Datta and B. Das, Appl. Phys. Lett., 56, 665 (1990).

    Article  CAS  Google Scholar 

  2. Y.A. Bychkov and E.I. Rashba, J. Phys. C: Solid State Phys., 17, 6039 (1984).

    Article  Google Scholar 

  3. J. Nitta, T. Akazaki, H. Takayanagi and T. Enoki, Phys. Rev. Lett., 78, 1335 (1997).

    Article  CAS  Google Scholar 

  4. F.J. Ohkawa and Y. Uemira, J. Phys. Soc. Jpn., 37, 1325 (1974).

    Article  CAS  Google Scholar 

  5. G.E. Marques and L.J. Sham, Surf. Sci., 113, 131 (1982).

    Article  CAS  Google Scholar 

  6. D. Stein and K.V. Klitzing, Phys. Rev. Lett., 51, 130 (1983).

    Article  CAS  Google Scholar 

  7. A. Darr, J.P. Kotthaus, and T. Ando, Proceedings of the 13th International Conference on the Physics of Semiconductors, Rome, Italy 1976, ed. F.G. Fumi (North-Holland, Amsterdam, 1977), p. 774.

  8. R. Winkler, Physica E, 22, 450 (2004).

    Article  Google Scholar 

  9. F. Malcher, G. Lommer, and U. Rossler, Superlatt. Microstruct., 2, 267 (1986).

    Article  CAS  Google Scholar 

  10. G.L. Chen, J. Han, T.T. Huang, S. Datta and D.B. Janes, Phys. Rev. B, 47, 4084 (1993).

    Article  CAS  Google Scholar 

  11. P. Pfeffer and W. Zawadzki, Phys. Rev. B, 68, 035315 (2003).

    Article  Google Scholar 

  12. E.A. de Andrada e Silva, G. C. Rocca and F. Bassani, Phys. Rev. B, 55, 16293 (1997).

    Article  Google Scholar 

  13. J. Schliemann, J. Carlos Egues and D. Loss, Phys. Rev. Lett., 90, 146801 (2003).

    Article  Google Scholar 

  14. M. Ohno and K. Yoh, Phys. Rev. B 75, 241308R (2007); K.␣Yoh, M. Ferhat, A. Riposan, and J.M. Milunchick, in Physics of Semiconductors, ed. J. Menendez and C.G. Van de Walle, AIP Conf. Proc. No. 772 (Melville, NY: AIP, 2005).

  15. P. Pfeffer and W. Zawadzki, Phys. Rev. B, 59, R5312 (1999).

    Article  CAS  Google Scholar 

  16. J. Luo, H. Munekata, F.F. Fang and P.J. Stiles, Phys. Rev. B, 38, 10142 (1988).

    Article  CAS  Google Scholar 

  17. G. Dresselhaus, Phys. Rev., 100, 580 (1955).

    Article  CAS  Google Scholar 

  18. W. Knap, C. Skierbiszewski, A. Zduniak, E. Litwin-Staszewska, D. Bertho, F. Kobbi, J.L. Robert, G.E. Pikus, F.G. Pikus, S.V. Iordanskii, V. Mosser, K. Zekentes, Yu.B. Lyanda-Geller, Phys. Rev. B 53, 3912 (1996).

    Article  CAS  Google Scholar 

  19. D. Grundler, Phys. Rev. Lett. 84, 6074 (2000); S. Sasa, K. Anjiki, T. Yamaguchi, and M. Inoue, Physica B 272, 149 (1999); Y. Sato, T. Kita, S. Gozu, and S. Yamada J. Appl. Phys. 89, 8017 (2001).

Download references

ACKNOWLEDGEMENTS

The authors are grateful to Munekazu Ohno for useful discussions. This work was partly supported by a Grant-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanji Yoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuda, T., Yoh, K. Enhancement of Spin–Orbit Interaction by Bandgap Engineering in InAs-Based Heterostructures. J. Electron. Mater. 37, 1806–1810 (2008). https://doi.org/10.1007/s11664-008-0559-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-008-0559-4

Key words

Navigation