Skip to main content
Log in

Study of the Au/In Reaction for Transient Liquid-Phase Bonding and 3D Chip Stacking

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

The latest three-dimensional (3D) chip-stacking technology requires the repeated stacking of additional layers without remelting the joints that have been formed at lower levels of the stack. This can be achieved by transient liquid-phase (TLP) bonding whereby intermetallic joints can be formed at a lower temperature and withstand subsequent higher-temperature processes. In order to develop a robust low-temperature Au/In TLP bonding process during which all solder is transformed into intermetallic compounds, we studied the Au/In reaction at different temperatures. It was shown that the formation kinetics of intermetallic compounds is diffusion controlled, and that the activation energy of Au/In reaction is temperature dependent, being 0.46 eV and 0.23 eV for temperatures above and below 150°C, respectively. Moreover, a thin Ti layer between Au and In was found to be an effective diffusion barrier at low temperature, while it did not inhibit joint formation at elevated temperatures during flip-chip bonding. This allowed us to control the intermetallic formation during the distinct stages of the TLP bonding process. In addition, a minimal indium thickness of 0.5 μm is required in order to enable TLP bonding. Finally, Au/In TLP joints of ∅40 μm to 60 μm were successfully fabricated at 180°C with very small solder volume (1 μm thickness).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Roman and T.W. Eagar, Proceedings of the International Society for Hybrid Microelectronics (ISHM) (1992), p.␣1.

  2. Bernstein L. 1966. J. Electrochem. Soc. 113: 1282. doi:10.1149/1.2423806.

    Article  CAS  Google Scholar 

  3. S. Wakiyama, H. Ozaki, Y. Nabe, T. Kume, T. Ezaki, and T.␣Ogawa, Proc. of ECTC (2007), p. 610.

  4. K. Sakuma, P.S. Andry, B. Dang, J. Maria, C.K. Tsang, C.␣Patel, S.L. Wright, B. Webb, E. Sprogis, S.K. Kang, R.␣Polastre, R. Horton, and J.U. Knickerbocker, Proc. of ECTC (2007), p. 627.

  5. A. Munding, A. Kaiser, P. Benkart, E. Kohn, A. Heittmann, and U. Ramacher, Proc. of IEEE (2006), p. 262.

  6. So W.W., Lee C.C. 2000. IEEE T. Compon. Pack. T. 23: 377. doi:10.1109/6144.846777.

    Article  CAS  Google Scholar 

  7. Wang T.B., Shen Z.Z., Ye R.Q., Xie X.M., Stubhan F., Freytag J. 2000. J. Electron. Mater. 29: 443. doi:10.1007/s11664-000-0158-5.

    Article  CAS  Google Scholar 

  8. Lee C.C., Wang C.Y. 1993. IEEE Trans. Comp. Hybrids Manufact. Technol. 16: 311. doi:10.1109/33.232058.

    Article  CAS  Google Scholar 

  9. Liu C.-C., Lin Y.-K., Houng M.-P., Wang Y.-H. 2003. IEEE T. Compon. Pack. T. 26: 635. doi:10.1109/TCAPT.2003.817655.

    CAS  Google Scholar 

  10. Mori M., Saito M., Hongu A., Niitsuma A., Ohdaira H. 1990. IEEE Trans. Comp. Hybrids Manufact. Technol. 13: 444. doi:10.1109/33.56182.

    Article  Google Scholar 

  11. Bjontegaard J., Buene L., Finstad T., Lonsjo O., Olsen T. 1983. Thin Solid films 101: 253. doi:10.1016/0040-6090(83)90252-3.

    Article  Google Scholar 

  12. Shieu F.S., Chen C.F., Sheen J.G., Chang Z.C. 1999. Thin Solid Films 346: 125. doi:10.1016/S0040-6090(98)01737-4.

    Article  CAS  Google Scholar 

  13. Quitoriano N., Wong W.S., Tsakalakos L., Cho Y., Sands T. 2001. J. Electron. Mater. 30: 1471. doi:10.1007/s11664-001-0204-y.

    Article  CAS  Google Scholar 

  14. Simic V., Marinkovic Z. 1977. Thin Solid Films 41: 57. doi:10.1016/0040-6090(77)90009-8.

    Article  CAS  Google Scholar 

  15. M. Paulasto, F. van Loo, and J.K. Kivilahti, J. Alloy Compd. 220, 136 (1995).

    Article  CAS  Google Scholar 

  16. Vianco P., Erickson K., Hopkins P. 1994. J. Electron. Mater. 23: 721. doi:10.1007/BF02651365.

    Article  CAS  Google Scholar 

  17. Haimovich J. 1993. AMP Journal of Technology 3: 46.

    Google Scholar 

  18. Laurila T., Vuorinen V., Kivilahti J.K. 2005. Mat. Sci. Eng. R49: 1.

    CAS  Google Scholar 

  19. Paul A., Kodentsov S., van Loo F. 2006. Intermetallics 14: 1428. doi:10.1016/j.intermet.2006.01.051.

    Article  CAS  Google Scholar 

  20. Liu Y.M., Chuang T.H., Electro J. 2003. Mater. 29: 405.

    Article  CAS  Google Scholar 

  21. Shohji G.I., Fujiwara S., Kiyono S., Kobayashi K.F. 1999. Scrip. Mater. 40: 815. doi:10.1016/S1359-6462(99)00007-X.

    Article  CAS  Google Scholar 

  22. Hasumi Y. 1985. J. Appl. Phys. 58: 3081. doi:10.1063/1.335808.

    Article  CAS  Google Scholar 

  23. Yost F.G. 1977. Gold Bull. 10: 94.

    CAS  Google Scholar 

  24. Millares M., Pieraggi B., Lelievre E. 1993. Solid State Ionics 63–65: 575. doi:10.1016/0167-2738(93)90161-U.

    Article  Google Scholar 

  25. Waelti M., Schneeberger N., Brand O., Baltes H. 2000. Mat. Res. Soc. Symp. Proc. 605: 183.

    CAS  Google Scholar 

  26. Zhang W., Brongersma S. H., Richard O., Brijs B., Balmans R., Froyen L., Maex K. 2004. J. Vac. Sci. Technol. B 22: 2715. doi:10.1116/1.1819899.

    Article  CAS  Google Scholar 

  27. Jacobson D.M., Humpston G. 1989. Gold Bull. 22: 9.

    CAS  Google Scholar 

  28. R. Labie, W. Ruythooren, K. Baert, E. Beyne, and B. Swinnen, accepted for IITC 2008.

Download references

Acknowledgement

The authors would like to thank Dr. Matin for the SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Ruythooren, W. Study of the Au/In Reaction for Transient Liquid-Phase Bonding and 3D Chip Stacking. J. Electron. Mater. 37, 1095–1101 (2008). https://doi.org/10.1007/s11664-008-0487-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-008-0487-3

Keywords

Navigation