Journal of Electronic Materials

, Volume 37, Issue 2, pp 135–144 | Cite as

Fabrication and Properties of an Asymmetric Waveguide Containing Nanoparticles

Article

A wavelength-tunable light-emitting source consisting of a multilayer asymmetric waveguide structure was designed, modeled, and fabricated on a silicon substrate. The structure has two layers: a silica cladding and a zirconia-Glymo (γ-glycidoxypropyltrimetoxysilane) sol–gel-based waveguide layer. CdS and CdSe/ZnS colloidal nanoparticles (NPs) used as light-emission sources were incorporated into the waveguide layer. These NPs are however unstable in a low-pH environment. A zirconia-Glymo sol–gel film using acetylacetone as the zirconium chelating agent was developed, thus eliminating the often used acetic acid from the sol–gel synthesis and preserving the NPs in the waveguide formation process. The acetylacetone chelating agent allowed for a high degree of cross-linking between the Zr and the Glymo as indicated by the Zr-O-Si absorption observed by infrared spectroscopy. The incorporation of the photoemissive CdSe/ZnS core/shell nanoparticles within the zirconia gel asymmetric slab waveguide was demonstrated as a means to create miniature multispectral light sources.

Keywords

Nanoparticles waveguide sensor sol–gel zirconia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Watanabe, Y. Oki, M. Maeda, T. Omatsu, Appl. Phys. Lett. 86, 151123 (2005)CrossRefGoogle Scholar
  2. 2.
    A.N. Kapanidis, S. Weiss, J. Chem. Phys. 117, 10953 (2002)CrossRefGoogle Scholar
  3. 3.
    L. Wang, W.H. Tan, Nano Lett. 6, 84 (2006)CrossRefGoogle Scholar
  4. 4.
    J.H. Warner, A. Hoshino, K. Yamamoto, R.D. Tilley, Angew. Chem. Int. Ed. 44, 4550 (2005)CrossRefGoogle Scholar
  5. 5.
    A.P. Alivisatos, W.W. Gu, C. Larabell, Ann. Rev. Biomed. Eng. 7, 55 (2005)CrossRefGoogle Scholar
  6. 6.
    See many examples in Gunter Schmid, Nanoparticles, 2 ed. (New York: Wiley-VCH, 2005)Google Scholar
  7. 7.
    J.P. Wilcoxon, G.A. Samara, P.N. Provencio, Phys. Rev. B: Condens. Matter 60, 2704 (1999)Google Scholar
  8. 8.
    E.S.P. Leong, M.K. Chong, S.F. Yu, K. Pita, IEEE Photonics Technol. Lett. 16, 2418 (2004)CrossRefGoogle Scholar
  9. 9.
    S. Juodkazis, E. Bernstein, J.C. Plenet, C. Bovier, J. Dumas, J. Mugnier, J.V. Vaitkus, Opt. Commun. 148, 242 (1998)CrossRefGoogle Scholar
  10. 10.
    For a general discussion on sol–gel processing see, for example, Alain C. Pierre, in Introduction to Sol–Gel Processing (Berlin: Springer, 1998)Google Scholar
  11. 11.
    H. Schmidt, J. Non-Cryst. Solids 112, 419 (1989)CrossRefGoogle Scholar
  12. 12.
    Y. Sorek, R. Reisfeld, I. Finkelstein, S. Ruschin, Appl. Phys. Lett. 63, 3256 (1993)CrossRefGoogle Scholar
  13. 13.
    G.I. Spijksma, H.J.M. Bouwmeester, D.H.A. Blank, V.G. Kessler, Chem. Commun. 16 1874 (2004)CrossRefGoogle Scholar
  14. 14.
    Y. Sorek, M. Zevin, R. Reisfeld, T. Hurvits, S. Ruschin, Chem. Mater. 9, 670 (1997)CrossRefGoogle Scholar
  15. 15.
    Z.Q. Zhan, H.C. Zeng, J. Non-Cryst. Solids 243, 26 (1999)CrossRefGoogle Scholar
  16. 16.
    A. Baraldi, R. Capelletti, M. Casalboni, C. Mora, M. Pavesi, R. Pizzoferrato, P. Prosposito, F. Sarcinelli, J. Non-Cryst. Solids 317, 231 (2003)CrossRefGoogle Scholar
  17. 17.
    E. Giorgetti, G. Margheri, S. Sottini, M. Casalboni, R. Senesi, M. Scarselli, R. Pizzoferrato, J. Non-Cryst. Solids 255, 193 (1999)CrossRefGoogle Scholar
  18. 18.
    B.L. Wang, L.L. Hu, Chin. Phys. 13, 1887 (2004)CrossRefGoogle Scholar
  19. 19.
    Rsoft Photonics CAD Suite Version 6.0.0 (Ossining, NY: RSoft Design Group, Inc.)Google Scholar
  20. 20.
    S. Middleman, Process Engineering Analysis in Semiconductor Device Fabrication (Columbis, OH: McGraw-Hill, 1993), p. 314Google Scholar
  21. 21.
    L.K. White, J. Electrochem. Soc. 132, 168 (1985)CrossRefGoogle Scholar
  22. 22.
    W. Que, X. Hu, Thin Solid Films 436, 196 (2003)CrossRefGoogle Scholar
  23. 23.
    S. Kumar Medda, S. De, G. De, J. Mater. Chem.15, 3278 (2005)CrossRefGoogle Scholar
  24. 24.
    M. Nocuńa, S. Siwulskia, E. Lejaa, J. Jedliński, Opt. Mater. 27, 1523 (2005)CrossRefGoogle Scholar
  25. 25.
    Z. Zhan, H.C. Zeng, J. Non-Cryst. Solids 243, 26 (1999)CrossRefGoogle Scholar
  26. 26.
    A. Baraldi, R. Capellati, M. Casalbnoni, C. Mora, M. Pavesi, R. Pizzferrrato, P. Prosposito, F. Sarcinelli, J. Non-Cryst. Solids 317, 231 (2003)CrossRefGoogle Scholar
  27. 27.
    J. Aldana, N. Lavelle, Y.J. Wang, X.G. Peng, J. Am. Chem. Soc. 127, 2496 (2005)CrossRefGoogle Scholar
  28. 28.
    I.M. Asher, B. Papanicolaou, E. Anastassakis, J. Phys. Chem. Solids 37, 221 (1976)CrossRefGoogle Scholar
  29. 29.
    B. Wang, L. Hu, Ceram. Int. 32, 7 (2006)CrossRefGoogle Scholar

Copyright information

© TMS 2007

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations