Skip to main content
Log in

Cavity Quantum Electrodynamics, Nanophotonics, and Quantum Communication with Atomically Doped Carbon Nanotubes

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

The latest theoretical studies of the near-field electrodynamic properties of atomically doped carbon nanotubes are reviewed. It has been shown that, similar to semiconductor microcavities and photonic band-gap materials, carbon nanotubes may qualitatively change the character of the atom–electromagnetic-field interactions, yielding strong atom–field coupling and the formation of quasi-one-dimensional atomic polariton states. A scheme for entangling such polaritons has been considered, and small-diameter metallic nanotubes have been shown to result in sizable amounts of the two-quantum bit (qubit) atomic entanglement with no damping for sufficiently long times. This challenges novel applications of atomically doped carbon nanotubes in quantum information science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Saito, G. Dresselhaus, and M.S. Dresselhaus, Science of Fullerens and Carbon Nanotubes (London: Imperial College Press, 1998).

    Google Scholar 

  2. H. Dai, Surf. Sci. 500, 218 (2002).

    Article  CAS  Google Scholar 

  3. R.H. Baughman, A.A. Zakhidov, and W.A. de Heer, Science 297, 787 (2002).

    Article  CAS  Google Scholar 

  4. S.G. Chou, F. Plentz, J. Jiang, R. Saito, D. Nezich, H.B. Ribeiro, A. Jorio, M.A. Pimenta, G.G. Samsonidze, A.P. Santos, M. Zheng, G.B. Onoa, E.D. Semke, G. Dresselhaus, and M.S. Dresselhaus, Phys. Rev. Lett. 94, 127402 (2005).

    Article  CAS  Google Scholar 

  5. S. Latil, F. Triozon, and S. Roche, Phys. Rev. Lett. 95, 126802 (2005).

    Article  Google Scholar 

  6. Y.-W. Son, J. Ihm, M.L. Cohen, S.G. Louie, and H.J. Choi, Phys. Rev. Lett. 95, 216602 (2005).

    Article  Google Scholar 

  7. L. Duclaux, Carbon 40, 1751 (2002).

    Article  CAS  Google Scholar 

  8. H. Shimoda, B. Gao, X.P. Tang, A. Kleinhammes, L. Fleming, Y. Wu, and O. Zhou, Phys. Rev. Lett. 88, 015502 (2002).

    Article  CAS  Google Scholar 

  9. G.-H. Jeong, A.A. Farajian, R. Hatakeyama, T. Hirata, T. Yaguchi, K. Tohji, H. Mizuseki, and Y. Kawazoe, Phys. Rev. B: Condens. Matter Mater. Phys. 68, 075410 (2003).

    Google Scholar 

  10. G.-H. Jeong, A.A. Farajian, T. Hirata, R. Hatakeyama, K. Tohji, T.M. Briere, H. Mizuseki, and Y. Kawazoe, Thin Solid Films 435, 307 (2003).

    Article  CAS  Google Scholar 

  11. M. Khazaei, A.A. Farajian, G.-H. Jeong, H. Mizuseki, T. Hirata, R. Hatakeyama, and Y. Kawazoe, J. Phys. Chem. B 108, 15529 (2004).

    Article  CAS  Google Scholar 

  12. M.M. Calbi, M.W. Cole, S.M. Gatica, M.J. Bojan, and G. Stan, Rev. Mod. Phys. 73, 857 (2001).

    Article  CAS  Google Scholar 

  13. S.M. Huang, B. Maynor, X.Y. Cai, and J. Liu, Adv. Mater. 15, 1651 (2003).

    Article  CAS  Google Scholar 

  14. L.X. Zheng, M.J. O’Connell, S.K. Doorn, X.Z. Liao, Y.H. Zhao, E.A. Akhadov, M.A. Hoffbauer, B.J. Roop, Q.X. Jia, R.C. Dye, D.E. Peterson, S.M. Huang, J. Liu, and Y.T. Zhu, Nat. Mater. 3, 673 (2004).

    Article  CAS  Google Scholar 

  15. I.V. Bondarev, G.Ya. Slepyan, and S.A. Maksimenko, Phys. Rev. Lett. 89, 115504 (2002).

    Article  CAS  Google Scholar 

  16. I.V. Bondarev and P. Lambin, Phys. Rev. B: Condens. Matter Mater. Phys. 70, 035407 (2004).

    Google Scholar 

  17. I.V. Bondarev and P. Lambin, Phys. Lett. A 328, 235 (2004).

    Article  CAS  Google Scholar 

  18. I.V. Bondarev and P. Lambin, Phys. Rev. B: Condens. Matter Mater. Phys. 72, 035451 (2005).

    Google Scholar 

  19. I.V. Bondarev and P. Lambin, Solid State Commun. 132, 203 (2004).

    Article  CAS  Google Scholar 

  20. I.V. Bondarev and P. Lambin, Trends in Nanotubes Research (New York: Nova Science, 2006).

  21. L.C. Andreani, G. Panzarini, and J.-M. Gérard, Phys. Rev. B: Condens. Matter Mater. Phys. 60, 13276 (1999).

    CAS  Google Scholar 

  22. A.S. Davydov, Quantum Mechanics (NEO, Ann Arbor, MI, 1967).

    Google Scholar 

  23. J.P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L.V. Keldysh, V.D. Kulakovskii, T.L. Reinecke, and A. Forchel, Nature 432, 197 (2004).

    Article  CAS  Google Scholar 

  24. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gobbs, G. Rupper, C. Ell, O.B.Shchekin, and D.G. Deppe, Nature 432, 200 (2004).

    Article  CAS  Google Scholar 

  25. E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J.M. Gerard, and J. Bloch, Phys. Rev. Lett. 95, 067401 (2005).

    Article  CAS  Google Scholar 

  26. S. Hughes, Phys. Rev. Lett. 94, 227402 (2005).

    Article  CAS  Google Scholar 

  27. T. Brandes, Phys. Rep. 408, 315 (2005).

    Article  CAS  Google Scholar 

  28. A.S. Srensen, C.H. van der Wal, L.I. Childress, and M.D. Lukin, Phys. Rev. Lett. 92, 063601 (2004).

    Article  Google Scholar 

  29. S.C. Benjamin, et al., J. Phys. Condens. Matter 18, S867 (2006).

    Article  CAS  Google Scholar 

  30. I.V. Bondarev and B. Vlahovic, Phys. Rev. B: Condens. Matter Mater. Phys. 74, 073401 (2006).

    Google Scholar 

  31. J.I. Cirac, P. Zoller, H.J. Kimble, and H. Mabuchi, Phys. Rev. Lett. 78, 3221 (1997).

    Article  CAS  Google Scholar 

  32. H.T. Dung, S. Scheel, D.-G. Welsch, and L. Knoll, J. Opt. B: Quant. Semiclass. Opt. 4, S169 (2002).

    Article  CAS  Google Scholar 

  33. I.V. Bondarev and B. Vlahovic, Phys. Rev. B: Condens. Matter Mater. Phys. 75, 033402 (2007).

    Google Scholar 

  34. W. Heitler, The Quantum Theory of Radiation (Oxford: Clarendon, 1954).

    Google Scholar 

  35. S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, and C. Dekker, Nature 386, 474 (1997).

    Article  CAS  Google Scholar 

  36. W.K. Wooters, Phys. Rev. Lett. 80, 2245 (1998).

    Article  Google Scholar 

  37. H. Schniepp and V. Sandoghdar, Phys. Rev. Lett. 89, 257403 (2002).

    Article  Google Scholar 

  38. S.V. Gaponenko, et al. J. Lightwave Technol. 17, 2128 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I.V. Bondarev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bondarev, I. Cavity Quantum Electrodynamics, Nanophotonics, and Quantum Communication with Atomically Doped Carbon Nanotubes. J. Electron. Mater. 36, 1579–1586 (2007). https://doi.org/10.1007/s11664-007-0269-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-007-0269-3

Key words

Navigation