Journal of Electronic Materials

, Volume 36, Issue 10, pp 1326–1332 | Cite as

Band-Gap Engineering in ZnO-MgO Films Prepared by Combustion Flame Pyrolysis of Solution Precursors

Article

MgO-doped ZnO films, metastable in nature, are deposited by combustion flame pyrolysis, as this is one of the suitable methods for fabricating such nonequilibrium films. Experiments to alloy ZnO with MgO have been carried out, aiming to expand the band-gap to the ultraviolet region. Structural and optical studies show that Zn1−xMgxO films with various x values (x = 0.2, 0.3, 0.33, and 0.4) could be obtained and the band-gap of ZnO could be tuned from 3.26 eV to 3.76 eV.

Key words

Wurtzite metastable phase segregation agglomerates band-gap 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. Ohtomo, M. Kawasaki, H. Koimura, and T. Yasuda, Appl. Phys. Lett. 75 (1999) 980.CrossRefGoogle Scholar
  2. 2.
    T. Tani and N. Watanabe, J. Am. Ceram. Soc. 86 (2003) 898.CrossRefGoogle Scholar
  3. 3.
    P. Yu, R.K. Tang, G.K.L. Wong, A. Ohtomo, and Y. Segawa, Solid State Commun. 103 (1997) 459.CrossRefGoogle Scholar
  4. 4.
    W. Yang, S.S. Hullavarad, B. Nagaraj, I. Takeuchi, R.P. Sharma, T. Venkatesan, R.D Vispute, and H. Shen, Appl. Phys. Lett. 82 (20) (2003) 3424.CrossRefGoogle Scholar
  5. 5.
    I. Takeuchi, W. Yang, K.S. Chang, M.A. Aronova, T. Venkatesan, R.D. Vispute, and L.A. Bendersky, J. Appl. Phys. 94 (11) (2003) 7336.CrossRefGoogle Scholar
  6. 6.
    C.H. Bates, W.B. White, and R. Roy, J. Inorg. Nucl. Chem. 28 (1966) 397.CrossRefGoogle Scholar
  7. 7.
    R.D. Shannon Acta Crystallogr. A 32 (1976) 751.CrossRefGoogle Scholar
  8. 8.
    S. Raghavan, J.P. Hajra, G.N.K. Iyengar, and K.P. Abraham, Thermochim. Acta 189 (1991) 151.CrossRefGoogle Scholar
  9. 9.
    L.A. Bendersky, I. Takeuchi, and K.S. Chang, J. App. Phys. 98 (8) (2005) 083526.CrossRefGoogle Scholar
  10. 10.
    B. Vikram Jayaram and Sirisha Rani, Mat. Sci. Eng. A304–306 (2001) 800.Google Scholar
  11. 11.
    I. Bozovic, J.N. Eckstein, G.F. Virshup, and A. Chaiken, J. Supercond. 7 (1994) 187.CrossRefGoogle Scholar
  12. 12.
    P. Bhattacharya, R.R. Das, and R.S. Katiyar, Appl. Phys. Lett. 83 (10) (2003) 2010.CrossRefGoogle Scholar
  13. 13.
    J. Narayan, A.K. Sharma, and A. Kvit, Solid State Commun. 121 (2002) 9.CrossRefGoogle Scholar
  14. 14.
    W.I. Park, G.-C. Yi, and H.M. Yang, Appl. Phys. Lett. 79 (2001) 2022.CrossRefGoogle Scholar
  15. 15.
    A. Ohtomo, M. Kawasaki, I. Ohkubo, and Y. Segawa, Appl. Phys. Lett. 72 (1998) 2466.CrossRefGoogle Scholar
  16. 16.
    J.H. Kang, Y.R. Park, and K.J. Kim, Solid State Commun. 115 (2000) 127.CrossRefGoogle Scholar
  17. 17.
    S. Choopun, R.D. Vispute, W. Yang, R.P. Sharma, and T. Venkatesan, Appl. Phys. Lett. 80 (9). (2002) 1529CrossRefGoogle Scholar
  18. 18.
    R. Kavitha, S.R. Hegde, and V. Jayaram, Mat. Sci. Eng. A 359 (2003) 18.CrossRefGoogle Scholar
  19. 19.
    K.L. Choy and H.K. Seh, Mat. Sci. Eng. A 281 (2000) 253.CrossRefGoogle Scholar
  20. 20.
    T.A. Polley, W.B. Carter, and D.B. Poker, Thin Solid Films 357 (1999) 132.CrossRefGoogle Scholar
  21. 21.
    J. Tikkanen, K.A. Gross, and C.C. Berndt, Surf. Coat. Technol. 90 (1997) 210.CrossRefGoogle Scholar
  22. 22.
    C.H. Hung and J.L. Katz, J. Mat. Res. 7 (1992) 1861.CrossRefGoogle Scholar

Copyright information

© TMS 2007

Authors and Affiliations

  1. 1.Department of MetallurgyIndian Institute of ScienceBangaloreIndia

Personalised recommendations