Advertisement

Journal of Electronic Materials

, Volume 37, Issue 2, pp 218–223 | Cite as

Recent Observations on Tin Pest Formation in Solder Alloys

  • W.J. PlumbridgeEmail author
Article

Abstract

The most recent observations of the response of bulk samples of several lead-free solder alloys, exposed to temperatures below the allotropic transition for tin for extended periods, are reported. Tin pest has been observed in Sn-0.5Cu, Sn-3.5Ag, Sn-3.8Ag-0.7Cu, and Sn-3.0Ag-0.5Cu alloys at both −18°C and −40°C. The process is slow and inconsistent, usually requiring several years, but may eventually result in complete disintegration of the sample. No tin pest was detected in Sn-Zn-3Bi or in the traditional Sn-37Pb solder alloy after exposure for up to 4 and 10 years, respectively. It is suggested that nucleation is affected by local composition and that extremely small amounts of either intentional solute or impurity are influential. Growth of tin pest is accompanied by a large volume change, and it is likely that stress relaxation ahead of the expanding grey tin front is a controlling factor. A stronger matrix would be more resistant in this case, and at the temperatures of exposure Sn-37Pb is stronger than either Sn-3.5Ag or Sn-0.5Cu. The absence of tin pest, to date, on actual joints is attributed to their restricted free surface area and the greater strength associated with very small samples.

Keywords

Tin pest lead-free solder alloys allotropic transition solder joints structural integrity in electronics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.J. Plumbridge, J. Mater. Sci. Mater. Electron, 18, 307 (2007)CrossRefGoogle Scholar
  2. 2.
    A. Bornemann (Symposium on Solder, ASTM STP 189, Philadelphia, 1956), p. 129Google Scholar
  3. 3.
    W.L. Williams (Symposium on Solder, ASTM STP 189, Philadelphia, 1956), p. 149Google Scholar
  4. 4.
    Y. Kariya, N. Williams, C.R. Gagg, W.J. Plumbridge, J. Mater., 53, 39 (2001)Google Scholar
  5. 5.
    Y. Kariya, C.R. Gagg, W.J. Plumbridge, Solder. Surf. Mount Technol., 13, 39 (2001)CrossRefGoogle Scholar
  6. 6.
    L. Snugovsky, P. Sngovsky, D.D. Perovic, J.W. Rutter, Mater. Sci. Technol., 21, 61 (2005)CrossRefGoogle Scholar
  7. 7.
    G. Tammann, K.L. Dreyer, Z. Anorg. Chem., 199, 97 (1931)CrossRefGoogle Scholar
  8. 8.
    E. Cohen, A.K.W.A. van Lieshout, Proc. K. AKAD. Wet. Amsterdam, 39, 1174 (1936). Google Scholar
  9. 9.
    G.V. Raynor, R.W. Smith, Proc. Roy. Soc., 244A, 101 (1958)Google Scholar
  10. 10.
    C.W. Mason, W.D. Forgeng, Met. Alloy, 6, 87 (1935)Google Scholar
  11. 11.
    R.R. Rogers, J.F. Fydell, J. Electrochem. Soc., 100, 383 (1953)CrossRefGoogle Scholar
  12. 12.
    A.A. Matvienko, A.A. Sidelnikov, J. Alloy Compd., 252, 172 (1997)CrossRefGoogle Scholar
  13. 13.
    Y.J. Joo, T. Takemoto, Mater. Lett., 3678, 793 (2002)CrossRefGoogle Scholar
  14. 14.
    W.J. Plumbridge, C.R. Gagg, J. Mater. Sci. Mater. Electron., 10, 461 (1999)CrossRefGoogle Scholar
  15. 15.
    E.S. Hedges, J.Y. Higgs, Nature, 169, 621 (1952)CrossRefGoogle Scholar
  16. 16.
    E. Cohen, A.K.W.A. van Lieshout, Proc. K. AKAD. Wet. Amsterdam, 39, 596 (1936)Google Scholar
  17. 17.
    F. Vnuk, A. de Monte, R.W. Smith, J. Appl. Phys., 55, 4171 (1984)CrossRefGoogle Scholar
  18. 18.
    G. Khatibi, A. Betzwar-Kotas, V. Gröger, B. Weiss, Fatigue, Fract. Engng. Mater. Struct., 28, 723 (2005)CrossRefGoogle Scholar
  19. 19.
    B. Weiss and A. Hadrboletz, ‹Fatigue 2002’ Proc. 8th Int. Fatigue Conf. June 2002, Stockholm, ed. A. F. Blom (Warrington, UK: Emas Pub., 2002)Google Scholar

Copyright information

© TMS 2007

Authors and Affiliations

  1. 1.The Open UniversityMilton KeynesUK

Personalised recommendations