Journal of Electronic Materials

, Volume 36, Issue 8, pp 1013–1020 | Cite as

Component Overpressure Growth and Characterization of High-Resistivity CdTe Crystals for Radiation Detectors

  • Krishna C. Mandal
  • Sung Hoon Kang
  • Michael Choi
  • Jiuan Wei
  • Lili Zheng
  • Hui Zhang
  • Gerald E. Jellison
  • Michael Groza
  • Arnold Burger
Article

Abstract

Spectrometer-grade CdTe single crystals with resistivities higher than 109 Ω cm have been grown by the modified Bridgman method using zone-refined precursor materials (Cd and Te) under a Cd overpressure. The grown CdTe crystals had good charge-transport properties (μτe = 2 × 10−3 cm2 V−1, μτh = 8 × 10−5 cm2 V−1) and significantly reduced Te precipitates compared with crystals grown without Cd overpressure. The crystal growth conditions for the Bridgman system were optimized by computer modeling and simulation, using modified MASTRAPP program, and applied to crystal diameters of 14 mm (0.55′′), 38 mm (1.5′′), and 76 mm (3′′). Details of the CdTe crystal growth operation, structural, electrical, and optical characterization measurements, detector fabrication, and testing using 241Am (60 keV) and 137Cs (662 keV) sources are presented.

Keywords

CdTe component overpressure crystal growth Bridgman radiation detectors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.B. James, T.E. Schlesinger, J. Lund, and M. Schieber, in Semiconductors for Room Temperature Nuclear Detector Applications (New York: Academic Press, 1995), Vol. 43, p. 334Google Scholar
  2. 2.
    A. Burger, M. Groza, Y. Cui, U.N. Roy, D. Hillman, M. Guo, L. Li, G.W. Wright, R.B. James, Phys. Status Solidi (c), 2, 1586 (2005)CrossRefGoogle Scholar
  3. 3.
    H.H. Barrett, J.D. Eskin, H.B. Barber, Phys. Rev. Lett., 75, 156 (1995)CrossRefGoogle Scholar
  4. 4.
    A.E. Bolotnikov, G.S. Camarda, G.A. Carini, M. Fiederle, L. Li, D.S. McGregor, W. McNeil, G.W. Wright, R.B. James, IEEE Trans. Nucl. Sci., 53, 607 (2006)CrossRefGoogle Scholar
  5. 5.
    G.A. Carini, A.E. Bolotnikov, G.S. Camarda, G.W. Wright, R.B. James, L. Li, Appl. Phys. Lett., 88, 143515 (2006)CrossRefGoogle Scholar
  6. 6.
    G. Koley, J. Liu, K.C. Mandal, Appl. Phys. Lett., 90, 102121 (2007)CrossRefGoogle Scholar
  7. 7.
    K. C. Mandal, S. H. Kang, M. Choi, A. Kargar, M. J. Harrison, D. S. McGregor, A. E. Bolotnikov, G. A. Carini, G. C. Camarda, and R. B. James, IEEE Trans. Nucl. Sci., to appearGoogle Scholar
  8. 8.
    P. Fougeres, P. Siffert, M. Hageali, J.M. Koebel, R. Regal, Nucl. Instr. and Meth. A, 428, 38 (1999)CrossRefGoogle Scholar
  9. 9.
    E. Belas, R. Grill, A.L. Toth, P. Moravec, P. Horodyský, J. Franc, P. Höschl, H. Wolf, Th. Wichert, IEEE Trans. Nucl. Sci., 52, 1932 (2005)CrossRefGoogle Scholar
  10. 10.
    J.F. Butler, C.L. Lingren, F.P. Doty, IEEE Trans. Nucl. Sci., 39, 605 (1992)CrossRefGoogle Scholar
  11. 11.
    K.C. Mandal, C. Noblitt, M. Choi, R. David Rauh, U.N. Roy, M. Groza, A. Burger, D.E. Holcomb, G.E. Jellison, SPIE, 5540, 186 (2004)CrossRefGoogle Scholar
  12. 12.
    K. C. Mandal, S. H. Kang, M. Choi, G. W. Wright, and G. E. Jellison, SPIE, 6319, 63190X-1–10 (2006)Google Scholar
  13. 13.
    K.C. Mandal, S.H. Kang, M. Choi, J. Bello, L. Zheng, H. Zhang, M. Groza, U.N. Roy, A. Burger, G.E. Jellison, D.E. Holcomb, G.W. Wright, J.A. Williams, J. Electron. Mater., 35, 1251 (2006)CrossRefGoogle Scholar
  14. 14.
    S. Terterian, M. Chu, D. Ting, L.C. Wu, C.C. Wang, M. Szawlowski, G. Vissor, P.N. Luke, J. Electron. Mater., 32, 796 (2003)CrossRefGoogle Scholar
  15. 15.
    A. Tanaka, Y. Masa, S. Seto, T. Kawasaki, J. Cryst. Growth, 94, 166 (1989)CrossRefGoogle Scholar
  16. 16.
    C. Martinez-Tomas, V. Munoz, R. Triboulet, J. Cryst. Growth, 197, 435 (1999)CrossRefGoogle Scholar
  17. 17.
    L. Lun, A. Yeckel, P. Daoutidis, J.J. Derby, J. Cryst. Growth, 291, 348 (2006)CrossRefGoogle Scholar
  18. 18.
    J.H. Greenberg, V.N. Guskov, V.B. Lararev, O.V. Shebershneva, J. Solid State Chem. 102, 382 (1993)CrossRefGoogle Scholar
  19. 19.
    R. Fang, R.F. Brebrick, J. Phys. Chem Solids, 57, 443 (1996)CrossRefGoogle Scholar
  20. 20.
    E. Rzepka, A. Lusson, A. Riviere, A. Aoudia, Y. Marfaing, R. Triboulet, J. Cryst. Growth, 161, 286 (1996)CrossRefGoogle Scholar
  21. 21.
    S. Seto, A. Tanaka, Y. Masa, M. Kawashima, J. Cryst. Growth, 117, 271 (1992)CrossRefGoogle Scholar
  22. 22.
    H.-Y. Shin, C.-Y. Sun, J. Cryst. Growth, 186, 354 (1998)CrossRefGoogle Scholar
  23. 23.
    H.N. Jayatirtha, D.O. Henderson, A. Burger, M.P. Volz, Appl. Phys. Lett., 62, 573 (1993)CrossRefGoogle Scholar
  24. 24.
    G.E. Jellison Jr., F.A. Modine, Appl. Opt., 36, 8184 (1997)Google Scholar
  25. 25.
    G.E. Jellison Jr., F.A. Modine, Appl. Opt., 36, 8190 (1997)CrossRefGoogle Scholar
  26. 26.
    W.J. McNeil, D.S. Mcgregor, A.E. Bolotnikov, G.W. Wright, R.B. James, Appl. Phys. Lett., 84, 1988 (2004)CrossRefGoogle Scholar
  27. 27.
    P.N. Luke, Appl. Phys. Lett., 65, 2884 (1994)CrossRefGoogle Scholar

Copyright information

© TMS 2007

Authors and Affiliations

  • Krishna C. Mandal
    • 1
  • Sung Hoon Kang
    • 1
  • Michael Choi
    • 1
  • Jiuan Wei
    • 2
  • Lili Zheng
    • 2
  • Hui Zhang
    • 2
  • Gerald E. Jellison
    • 3
  • Michael Groza
    • 4
  • Arnold Burger
    • 4
  1. 1.EIC Laboratories, IncNorwoodUSA
  2. 2.Department of Mechanical EngineeringState University of New York at Stony BrookStony BrookUSA
  3. 3.Oak Ridge National LaboratoryOak RidgeUSA
  4. 4.Center of Excellence in Physics and Chemistry of MaterialsFisk UniversityNashvilleUSA

Personalised recommendations