Skip to main content
Log in

Electrically Nonconductive Thermal Pastes with Carbon as the Thermally Conductive Component

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Electrically nonconductive thermal pastes have been attained using carbon (carbon black or graphite) as the conductive component and ceramic (fumed alumina or exfoliated clay) as the nonconductive component. For graphite particles (5 μm), both clay and alumina are effective in breaking up the electrical connectivity, resulting in pastes with electrical resistivity up to 1013Ω·cm and thermal contact conductance (between copper surfaces of roughness 15 μm) up to 9 × 104 W/m2·°C. For carbon black (30 nm), clay is more effective than alumina, providing a paste with resistivity 1011 Ω·cm and thermal contact conductance 7 × 104 W/m2·°C. Carbon black increases the thermal stability, whereas either graphite or alumina decreases the thermal stability. The antioxidation effect of carbon black is further increased by the presence of clay up to 1.5 vol.%. The addition of clay (up to 0.6 vol.%) or alumina (up to 2.5 vol.%) to graphite paste enhances the thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.G. Wolff, D.A. Schneider, Int. J. Heat Mass Transfer 41, 3469 (1998)

    Article  CAS  Google Scholar 

  2. T. Ouellette and M. de Sorgo (Paper presented at Proc. Power Electronic Design Conf. Power Sources Users Conf., Cerritos, CA, 1985)

  3. M.R. Vogel, Proc. INTERPACK '95 Electronic Packaging Conf. (New York: ASME, 1995), vol. 10–2, p. 989

  4. V. Sartre, M. Lallemand, Appl. Therm. Eng. 21, 221 (2001)

    Article  CAS  Google Scholar 

  5. M. Grujicic, C.L. Zhao, E.C. Dusel, Appl. Surf. Sci. 246, 290 (2005)

    Article  CAS  Google Scholar 

  6. D.D.L. Chung, J. Mater. Eng. Perform. 10, 56 (2001)

    Article  CAS  Google Scholar 

  7. L. Maguire, M. Behnia, G.L. Morrison, Microelectron. Reliab. 45, 711–725 (2005)

    Article  CAS  Google Scholar 

  8. M. Grujicic, C.L. Zhao, E.C. Dusel, Appl. Surf. Sci. 246, 290 (2005)

    Article  CAS  Google Scholar 

  9. Y. Xu, X. Luo, D.D.L. Chung, J. Electron. Packag. 124, 188 (2002)

    Article  CAS  Google Scholar 

  10. C.-K. Leong, D.D.L. Chung, Carbon 42, 2323 (2004)

    Article  CAS  Google Scholar 

  11. C.-K. Leong, D.D.L. Chung, Carbon 41, 2459 (2003)

    Article  CAS  Google Scholar 

  12. C.-K. Leong, Y. Aoyagi, D.D.L. Chung, J. Electron. Mater. 34, 1336 (2005)

    Article  CAS  Google Scholar 

  13. C.-K. Leong, Y. Aoyagi, D.D.L. Chung, Carbon 44, 435 (2006)

    Article  CAS  Google Scholar 

  14. T.A. Howe, C.-K. Leong, D.D.L. Chung, J. Electron. Mater. 35, 1628 (2006)

    Article  CAS  Google Scholar 

  15. K. Zhang, G. Xiao, C.K.Y. Wong, H. Gu, M.M.F. Yuen, P.C.H. Chan, and B. Xu, Proc. 55th Electronic Components and Technology Conf. (Piscataway, NJ: Institute of Electrical and Electronics Engineers, 2005), vol. 1, pp. 60–65

  16. Q. Ngo, B.A. Cruden, A.M. Cassell, G. Sims, J. Li, M. Meyyappan, and C.Y. Yang, Proc. Symp. Surface Engineering in Materials Science III, ed. A. Agarwal (Warrendale, PA: TMS, 2005), pp. 75–82

  17. T. Lee, K. Chiou, F. Tseng, and C. Huang, Proc. 55th Electronic Components and Technology Conf. (Lake Buena Vista, FL: Institute of Electrical and Electronics Engineers, 2005), vol. 1, pp. 55–59

  18. Y. Wu, C.H. Liu, H. Huang, S.S. Fan, Appl. Phys. Lett. 87, 213108 (2005)

    Article  Google Scholar 

  19. PCT International Application WO 2006048848 (2006)

  20. U.S. patent US 6,475,962 (2002)

  21. M. Alexandre, P. Dubois, Mater. Sci. Eng. 28, 1 (2000)

    Article  Google Scholar 

  22. A.B. Morgan, J.D. Harris, Polymer 45, 8695 (2004)

    Article  CAS  Google Scholar 

  23. N.H. Tran, G.R. Dennis, A.S. Mileva, G.S.K. Kannangara, P. Williams, M.A. Wilsona, R.N. Lamb, J. Colloid Interface Sci. 297, 541 (2006)

    Article  CAS  Google Scholar 

  24. D. Burgentzlé, J. Duchet, J.F. Gérard a, A. Jupinb, B. Fillon, J. Colloid Interface Sci. 278, 26 (2004)

    Article  Google Scholar 

  25. V.E. Yudina, G.M. Divouxb, J.U. Otaigbeb, V.M. Svetlichnyi, Polymer 46, 10866 (2005)

    Article  Google Scholar 

  26. T.T. Chasteka, A. Steina, C. Macosko, Polymer 46, 4431 (2005)

    Article  Google Scholar 

  27. D. Burgentzlé, J. Duchet, J.F. Gérard, A. Jupin, B. Fillon, J. Colloid Interface Sci. 278, 26 (2004)

    Article  Google Scholar 

  28. Standard Test Methods for Rheological Properties of Non-Newtonian Materials by Rotational (Brookfield Type) Viscometer, ASTM Standard D 2196, Annual Book of ASTM Standards, 2005 (West Conshohocken, PA: ASTM Int.), vol.␣06.01, pp. 233–237

  29. R.G. de Kretser, P.J. Scales, D.V. Boger, Colloids Surf. 137, 307 (1998)

    Article  Google Scholar 

  30. A.R. Horrocks, J. Mwila, M. Miraftab, M. Liu, S.S. Chohan, Polym. Degrad. Stab. 65, 25 (1999)

    Article  CAS  Google Scholar 

  31. W. Hawkins, ed., Polymer Stabilization, ed. W. Hawkins (New York: Wiley-Interscience, 1972), pp. 63–65

  32. Yasuhiro Aoyagi and D.D.L. Chung, J. Mater. Sci. 42, 2358

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.D.L. Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, C., Howe, T. & Chung, D. Electrically Nonconductive Thermal Pastes with Carbon as the Thermally Conductive Component. J. Electron. Mater. 36, 659–668 (2007). https://doi.org/10.1007/s11664-007-0116-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-007-0116-6

Keywords

Navigation