Skip to main content
Log in

Diffusion behavior of Cu in Cu/electroless Ni and Cu/electroless Ni/Sn-37Pb solder joints in flip chip technology

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

For Cu pads used as under bump metallization (UBM) in flip chip technology, the diffusion behavior of Cu in the metallization layer is an important issue. In this study, isothermal interdiffusion experiments were performed at 240°C for different times with solid-solid and liquid-solid diffusion couples assembled in Cu/electroless-Ni (Ni-10 wt.% P) and Cu/electroless Ni (Ni-10 wt.% P)/ Sn-37Pb joints. The diffusion structure and concentration profiles were examined by scanning electron microscopy and electron microprobe analysis. The interdiffusion fluxes of Cu, Ni and P were calculated from the concentration profiles with the aid of Matano plane evaluation. The values of JCu, JNi, and JP decreased with increasing annealing time. The average effective interdiffusion coefficients on the order of 10−14 cm2/s were also evaluated within the diffusion zone. The amounts of Cu dissolved in the intermetallic compounds (IMCs) Ni3Sn4 and Ni3P that precipitate after annealing the Cu/electroless Ni/Sn-37Pb joints were about 0.25 at.% and 0.5 at.%, respectively. For the short period of annealing, it appears that the presence of electroless Ni (EN) with the Sn-Pb soldering reaction assisted the diffusion of Cu through the EN layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Aschenbrenner, A. Ostmann, U. Beutler, J. Simon, and H. Reichl, IEEE Trans. Comp. Pack. B 18, 334 (1995).

    Article  CAS  Google Scholar 

  2. J.W. Jang, P.G. Kim, K.N. Tu, D.R. Frear, and P. Thompson, J. Appl. Phys. 85, 8456 (1999).

    Article  CAS  Google Scholar 

  3. Y.D. Jeon, S. Nieland, A. Ostmann, H. Reichl, and K.W. Paik, J. Electron. Mater. 32, 548 (2003).

    Article  CAS  Google Scholar 

  4. A.J.G. Strandjord, S.F. Popelar, and C.A. Erickson, Proceedings of the International Symposium and Exhibition on Advanced Packaging Materials Processes, Properties and Interfaces, Braselton, GA (Piscataway, NJ: IEEE. 2000). pp. 107–111.

    Google Scholar 

  5. P.G. Kim, J.W. Jang, K.N. Tu, and D.R. Frear, J. Appl. Phys. 86, 1266 (1999).

    Article  CAS  Google Scholar 

  6. A.C.K. So, Y.C. Chan, and J.K.L. Lai, IEEE Trans. Comp. Pack. B 20, 161 (1997).

    Article  CAS  Google Scholar 

  7. A.A. Liu, H.K. Kim, K.N. Tu, and P.A. Totta, J. Appl. Phys. 80, 2774 (1996).

    Article  CAS  Google Scholar 

  8. D.R. Frear and S. Thomas, MRS Bull. 28, 68 (2003).

    Google Scholar 

  9. J.W. Wang, P.G. Kim, K.N. Tu, D.R. Frear, and P. Thompson, J. Appl. Phys. 85, 8456 (1999).

    Article  Google Scholar 

  10. J.H. Yeh (M.S. Thesis, National Tsing Hua University, Hsinchu, Taiwan, 2000).

  11. K.L. Lin and Y.C. Liu, IEEE Trans. Adv. Pack. 22, 575 (1999).

    Article  CAS  Google Scholar 

  12. K.L. Lin and K.T. Hsu, IEEE Trans. Comp. Pack. 23, 657 (2000).

    Article  CAS  Google Scholar 

  13. J.W. Jang, D.R. Frear, T.Y. Lee, and K.N. Tu, J. Appl. Phys. 88, 6359 (2000).

    Article  CAS  Google Scholar 

  14. C.L. Lee and K.L. Lin, Thin Solid Films 249, 201 (1994).

    Article  CAS  Google Scholar 

  15. Y.C. Sohn, J. Yu, S.K. Kang, W.K. Choi, and D.Y. Shih, J. Mater. Res. 18, 4 (2003).

    CAS  Google Scholar 

  16. B.L. Young and J.G. Duh, J. Electron. Mater. 30, 878 (2001).

    CAS  Google Scholar 

  17. C.S. Huang and J.G. Duh, J. Mater. Res. 18, 935 (2003).

    Article  CAS  Google Scholar 

  18. K.M. Chow, W.Y. Ng, and L.K. Yeung, Surf. Coat. Technol. 105, 56 (1998).

    Article  CAS  Google Scholar 

  19. Y. Kawanami, M. Nakano, M. Kajihara, and T. Mori, Mater. Trans. JIM 39, 218 (1998).

    CAS  Google Scholar 

  20. U. Kurpick, Am. Phys. Soc. Phys. Rev. B: Condens. Matter Mater. Phys. 64, 075418 (2001).

    Google Scholar 

  21. P. Bai, B.D. Gittleman, B.X. Sun, J.F. McDonald, T.M. Lu, and M.J. Costa, Appl. Phys. Lett. 60, 1824 (1992).

    Article  CAS  Google Scholar 

  22. J.G. Duh and M.A. Dayananda, Diffus. Defect Data 39, 1 (1985).

    CAS  Google Scholar 

  23. J.G. Duh (Ph.D. Dissertation, Purdue University, 1983).

  24. M.E. Glicksman, Diffusion in Solids, Field Theory, Solid-State Principles, and Applications, (New York: John Wiley and Sons, 2000), pp. 175–187.

    Google Scholar 

  25. M.A. Dayananda and D.A. Behnke, Scripta Metall. 25, 2187 (1991).

    Article  CAS  Google Scholar 

  26. R.E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles (Boston, MA: PWS-KENT, 1992), pp. 364–369.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, YC., Duh, JG. Diffusion behavior of Cu in Cu/electroless Ni and Cu/electroless Ni/Sn-37Pb solder joints in flip chip technology. J. Electron. Mater. 35, 2164–2171 (2006). https://doi.org/10.1007/s11664-006-0327-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-006-0327-2

Key words

Navigation