Advertisement

Journal of Electronic Materials

, Volume 35, Issue 6, pp 1465–1469 | Cite as

Hydrogenation of HgCdTe epilayers on Si substrates using glow discharge plasma

  • T. D. Golding
  • R. Hellmer
  • L. Bubulac
  • J. H. Dinan
  • L. Wang
  • W. Zhao
  • M. Carmody
  • H. O. Sankur
  • D. Edwall
Article

Abstract

Preliminary results of a study of the hydrogenation of HgCdTe epilayers grown by molecular beam epitaxy on Si substrates using a glow-discharge plasma are presented. The aim of the program is to employ H to passivate the detrimental opto-electronic effects of threading dislocations present in the HgCdTe epilayers. Secondary ion mass spectroscopy depth profiling has been performed to characterize 1H and 2H incorporation. It has been found that H can be controllably incorporated in HgCdTe epilayers to levels in the 1014 cm−3 to 1018 cm−3 range while maintaining the sample at temperatures lower than 60°C. Profiles indicate that H accumulates in regions of known high defect density or in highly strained regions. Analysis of the H depth profile data indicates that the current density-time product is a good figure of merit to predict the H levels in the HgCdTe epilayer. There are progressive differences in the 1H and 2H uptake efficiencies as a function of depth. Magneto-Hall measurements show consistently higher mobilities at low temperatures for majority carriers in hydrogenated samples.

Key words

HgCdTe silicon substrate glow discharge plasma molecular beam epitaxy (MBE) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.M. Arias, J.G. Pasco, M. Zambian, J. Bajaj, L.J. Kozlowski, R.E. DeWames, and W.E. Tennant, Proc. SPIE 2228, 210 (1994).CrossRefGoogle Scholar
  2. 2.
    J. Bajaj, J.M. Arias, M. Zandian, D.D. Edwall, J.G. Pasko, L.O. Bubulac, and L.J. Kozlowski, J. Electron. Mater. 24, 1394 (1995).Google Scholar
  3. 3.
    P.S. Wijewarnasuriya et al., J. Electron. Mater. 27, 546 (1998).CrossRefGoogle Scholar
  4. 4.
    S.J. Pearton, J.W. Corbett, and M. Stavola, Hydrogen in Crystalline Semiconductors, Springer Series in Materials Science 16 (New York: Springer, 1992).Google Scholar
  5. 5.
    J. I. Pankove and N. M. Johnson, Semicond. Semimetals 34, 1991; ibid. 61, (1999).Google Scholar
  6. 6.
    S.J. Pearton, J.W. Corbett, and T.S. Shi, Appl. Phys. A: Solid Surf. 43, 153 (1987).CrossRefGoogle Scholar
  7. 7.
    K.C. Hseigh, M.S. Feng, G.E. Stillman, N. Holomyak, C.R. Itoh, and M. Feng, Appl. Phys. Lett. 54, 341 (1989).CrossRefGoogle Scholar
  8. 8.
    U.K. Chakravarti, S.J. Pearton, J. Lopata, and V. Swaminathan, Appl. Phys. Lett. 57, 87 (1990).CrossRefGoogle Scholar
  9. 9.
    W.C. Dautremont-Smith, J. Lopata, L.A. Koszi, M. Stavola, and V. Swaminathan, Appl. Phys. Lett. 66, 1993 (1989).Google Scholar
  10. 10.
    See for example, P. Boieriu, C.H. Grein, S. Velicu, J. Garland, C. Fulk, A. Stoltz, W. Mason, L. Bubulac, and J.H. Dinan, in this issue.Google Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2006

Authors and Affiliations

  • T. D. Golding
    • 1
    • 2
  • R. Hellmer
    • 2
  • L. Bubulac
    • 3
  • J. H. Dinan
    • 3
  • L. Wang
    • 4
  • W. Zhao
    • 2
  • M. Carmody
    • 5
  • H. O. Sankur
    • 5
  • D. Edwall
    • 5
  1. 1.Amethyst Research Inc.Ardmore
  2. 2.Department of PhysicsUniversity of North TexasDenton
  3. 3.U.S. Army RDECOM CERDEC NVESDFt. Belvoir
  4. 4.Evans Analytical GroupSunnyvale
  5. 5.Rockwell Scientific CompanyCamarillo

Personalised recommendations