Journal of Electronic Materials

, Volume 35, Issue 6, pp 1267–1274 | Cite as

Characterization of Cd1−xZnxTe crystals grown from a modified vertical bridgman technique

  • Y. Cui
  • M. Groza
  • G. W. Wright
  • U. N. Roy
  • A. Burger
  • L. Li
  • F. Lu
  • M. A. Black
  • R. B. James
Article

Abstract

Cd1−xZnxTe (CZT) crystals grown from a modified vertical Bridgman technique were characterized by means of an optical polarized transmission technique using the Pockels effect, low-temperature direct current (DC) photo-conductivity technique, low-temperature photoluminescence (PL) spectroscopy, room-temperature PL mapping technique, and detector performance measurements. Electric field mapping indicates that an approximation of a uniform electric field distribution approximation is generally satisfied for CZT detectors operated at room temperature under typical working conditions. A nonuniform electric field distribution is observed under intense infrared (IR) light illumination, and a model is proposed based on charge generation of defects, trapping, and space-charge effects. The largest hole mobility-lifetime product (μτ)h of the CZT detector measured by DC photoconductivity is 7.0 × 10−4 cm2/V. The detector treated with 2% bromine in methanol chemical etch has a relatively small surface recombination velocity at room temperature, which was obtained from DC photocurrent and detector performance tests, as measured by irradiation of 5.5-MeV α particles and 59.6-keV γ-rays, respectively. We have clearly shown the equivalence of charge collection efficiency results measured by both DC photocurrent and α particle response. Low-temperature DC photocurrent measurements show that surface recombination velocity increases significantly with decreasing temperature from 300 K to 250 K. The effective electron mobility-lifetime product—combination effects of bulk and surface of CZT crystal—increases with increment of temperature. Room-temperature PL mapping measurements indicate uniformity of zinc concentration within CZT crystals. Low-temperature PL spectroscopy shows that the dominant emission peaks are excitons, which are bound to either shallow neutral donors (D0, X) or neutral acceptors (A0, X), depending on the temperature, concentration of donors and acceptors, and the incident light intensity. It was found that the luminescence of (D0, X) depends linearly on the incident laser intensity, while (A0, X) has a nonlinear dependence.

Key words

CZT photoluminescence DC photoconductivity Pockels effect radiation detector 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Li et al., IEEE Nucl. Sci. Symp. Rec. 4, 2396 (2002).Google Scholar
  2. 2.
    P. De Antonis, E.J. Morton, and F.J.W. Podd, IEEE Trans. Nucl. Sci. 43, 1487 (1996).CrossRefGoogle Scholar
  3. 3.
    H.W. Yao, R.J. Anderson, and R.B. James, Proc. SPIE 3115, 62 (1997).CrossRefGoogle Scholar
  4. 4.
    A. Zumbiehl, M. Hage-Ali, P. Fougeres, J.M. Koebel, R. Regal, and P. Siffert, J. Cryst. Growth 197, 650 (1999).CrossRefGoogle Scholar
  5. 5.
    A. Burger, M. Groza, Y. Cui, D. Hillman, E. Brewer, A. Bilikiss, G.W. Wright, F. Lu, L. Li, and R.B. James, J. Electron. Mater. 32, 756 (2003).CrossRefGoogle Scholar
  6. 6.
    D.S. McGregor, Z. He, H.A. Seifert, D.K. Wehe, and R.A. Rojeski, Appl. Phys. Lett. 72, 792 (1998).CrossRefGoogle Scholar
  7. 7.
    W.J. McNeil, D.S. McGregor, A.E. Bolotnikov, G.W. Wright, and R.B. James, Appl. Phys. Lett. 84, 1988 (2004).CrossRefGoogle Scholar
  8. 8.
    H.H. Barrett, J.D. Eskin, and H.B. Barber, Phys. Rev. Lett. 75, 156 (1995).CrossRefGoogle Scholar
  9. 9.
    P.N. Luke, Appl. Phys. Lett. 65, 2884 (1994).CrossRefGoogle Scholar
  10. 10.
    K. Parnham, C. Szeles, T.H. Prettyman, M. Smith, C. Stahle, B.H. Parker, and L.L. Wang, Nucl. Instr. Methods A458, 334 (2001).Google Scholar
  11. 11.
    Y. Cui, M. Groza, D. Hillman, A. Burger, and R.B. James, J. Appl. Phys. 92, 2556 (2002).CrossRefGoogle Scholar
  12. 12.
    T.E. Schlesinger et al., J. Electron. Mater. 28, 864 (1999).CrossRefGoogle Scholar
  13. 13.
    Y. Cui, G.W. Wright, X. Ma, K. Chattopadhyay, R.B. James, and A. Burger, J. Electron. Mater. 30, 774 (2001).Google Scholar
  14. 14.
    H. Chen et al., J. Appl. Phys. 80, 3509 (1996).CrossRefGoogle Scholar
  15. 15.
    A. Ruzin and Y. Nemirovsky, J. Appl. Phys. 82, 2754 (1997).CrossRefGoogle Scholar
  16. 16.
    Y. Cui, G. Wright, K. Kolokolnikov, C. Barnett, K. Reed, U.N. Roy, A. Burger, and R.B. James, Proc. SPIE 4507, 12 (2001).CrossRefGoogle Scholar
  17. 17.
    J.E. Toney, B.A. Brunett, T.E. Schlesinger, R.B. James, and E.E. Eissler, IEEE Trans. Nucl. Sci. 44, 499 (1997).CrossRefGoogle Scholar
  18. 18.
    Z.F. Li, W. Lu, G.S. Huang, J.R. Yang, L. He, and S.C. Shen, J. Appl. Phys. 90, 260 (2001).CrossRefGoogle Scholar
  19. 19.
    K. Hjelt, M. Juvonen, T. Tuomi, S. Nenonen, E.E. Eissler, and M. Bavdaz, Phys. Status Solidi (a)162, 747 (1997).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2006

Authors and Affiliations

  • Y. Cui
    • 1
  • M. Groza
    • 1
  • G. W. Wright
    • 1
  • U. N. Roy
    • 1
  • A. Burger
    • 1
  • L. Li
    • 2
  • F. Lu
    • 2
  • M. A. Black
    • 2
  • R. B. James
    • 3
  1. 1.Center of Excellence in Physics and Chemistry of MaterialsFisk UniversityNashville
  2. 2.Yinnel Tech Inc.South Bend
  3. 3.Brookhaven National LaboratoryUpton

Personalised recommendations