The electrical behavior of nitro oligo(phenylene ethynylene)’s in pure and mixed monolayers

Abstract

In order to realize molecular electronic devices, molecules with electrically interesting behavior must be identified. One molecule that has potential for use in devices is an oligo(phenylene ethynylene) (OPE) molecule with nitro sidegroup(s). These “nitro” molecules have been reported to show electrical switching with memory behavior, as well as negative differential resistance (NDR). However, different research groups testing the nitro molecules in different test beds have observed different electrical behaviors. In this work, we assembled two different nitro monolayers: one completely composed of nitro molecules and the second a mixed matrix where nitro molecules were separated by dodecanethiol molecules. We used scanning tunneling microscopy to image each of the monolayers and observed that the nitro molecules were effectively inserted into the ordered dodecanethiol monolayer. We tested the electrical behavior of the pure monolayer, as well as the mixed monolayer, in our nanowell test device. The nanowell devices were fabricated on micron-size gold lines patterned on oxide-coated silicon wafers. The gold lines were covered with a silicon dioxide layer, through which a nanometer size well was milled. This nanowell device was filled with a self-assembling monolayer of organic molecules, and capped with titanium and gold. The nanowell electrical results showed switching with memory for the pure nitro monolayer, but not for the mixed monolayer. This switching behavior consisted of a molecule starting in a high conductivity state and switching to a low conductivity state upon application of a threshold voltage. The high conductivity state could only be returned by application of an opposite threshold voltage.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M.A. Reed, J. Chen, A.M. Rawlett, D.W. Price, and J.M. Tour, Appl. Phys. Lett. 78, 3735 (2001).

    Article  CAS  Google Scholar 

  2. 2.

    C. Li et al., Appl. Phys. Lett. 82, 645 (2003).

    Article  CAS  Google Scholar 

  3. 3.

    I. Kratochvilova, M. Kocirik, A. Zambova, J. Mbindyo, T.E. Mollouk, and T.S. Mayer, J. Mater. Chem. 12, 2927 (2002).

    Article  CAS  Google Scholar 

  4. 4.

    F.F. Fan, J. Yang, L. Cai, D.W. Price, Jr., S.M. Dirk, D.V. Kosynkin, Y. Yao, A.M. Rawtlett, J.M. Tour, and A.J. Bard, J. Am. Chem. Soc. 124, 5550 (2002).

    Article  CAS  Google Scholar 

  5. 5.

    Z.J. Donhauser et al., Science 292, 2303 (2001).

    Article  CAS  Google Scholar 

  6. 6.

    P.A. Lewis, C.E. Inman, Y. Yao, J.M. Tour, J.E. Hutchinson, and P.S. Weiss, J. Am. Chem. Soc. 126, 12214 (2004).

    Article  CAS  Google Scholar 

  7. 7.

    Y. Selzer, L. Cai, M.A. Cabassi, Y. Yao, J.M. Tour, T.S. Mayer, and D.L. Allara, Nano Lett. 5, 61 (2005).

    Article  CAS  Google Scholar 

  8. 8.

    N. Majumdar, N. Gergel, D. Routenberg, L.R. Harriott, J.C. Bean, B. Li, L. Pu, Y. Yao, and J.M. Tour, J. Vac. Sci. Technol., B 23, 1417 (2005).

    Article  CAS  Google Scholar 

  9. 9.

    J.M. Tour et al., Chem.-Eur. J. 7, 5118 (2001).

    Article  CAS  Google Scholar 

  10. 10.

    J.J. Stapleton, P. Harder, J.A. Daniel, M.D. Reinard, Y. Yao, D.W. Price, J.M. Tour, and D.L. Allara, Langmuir 19, 8245 (2003).

    Article  CAS  Google Scholar 

  11. 11.

    Y. Qian, G. Yang, J. Yu, T.A. Jung, and G. Liu, Langmuir 19, 6056 (2003).

    Article  CAS  Google Scholar 

  12. 12.

    M.T. Cygan, T.D. Dunbar, J.J. Arnold, L.A. Bumm, N.F. Shedlock, T.P. Burgin, L. Jones II, D.L. Allara, J.M. Tour, and P.S. Weiss, J. Am. Chem. Soc. 120, 2721 (1998).

    Article  CAS  Google Scholar 

  13. 13.

    H. Kondoh, C. Kodama, H. Sumida, and H. Nozoye, J. Chem. Phy. 111, 1175 (1999).

    Article  CAS  Google Scholar 

  14. 14.

    N. Gergel, N. Majumdar, K. Keyvanfar, G. Pattnaik, G. Zangari, N. Swami, L.R. Harriott, J.C. Bean, Y. Yao, and J.M. Tour, J. Vac. Sci. Technol., A 23, 880 (2005).

    Article  CAS  Google Scholar 

  15. 15.

    Y. Selzer, L. Cai, M. Cabassi, Y. Yao, J.M. Tour, T.S. Mayer, and D. Allara, Nano Lett. 5, 61 (2005).

    Article  CAS  Google Scholar 

  16. 16.

    Y. Karzazi, J. Cornil, and J.L. Bridas, Nanotechnology 14, 165 (2003).

    Article  CAS  Google Scholar 

  17. 17.

    J.M. Seminario, P.A. Derosa, and J.L. Bastos, J. Am. Chem. Soc. 124, 10266 (2002).

    Article  CAS  Google Scholar 

  18. 18.

    J.G. Kushmerick, D.B. Holt, J.C. Yang, J. Naciri, M.H. Moore, and R. Shashidhar, Phys. Rev. Lett. 89, 86802 (2002).

    Article  CAS  Google Scholar 

  19. 19.

    W. Wang, T. Lee, and M.A. Reed, Phys. Rev. B: Condens. Matter Mater. Phys. 68, 035416 (2003).

    Google Scholar 

  20. 20.

    X.D. Cui, X. Zarate, J. Tomfohr, O.F. Sankey, A. Primak, A.L. Moore, D. Gust, G. Harris, and S.M. Lindsay, Nanotechnology 13, 5 (2002).

    Article  CAS  Google Scholar 

  21. 21.

    D.J. Wold and C.D. Frisbie, J. Am. Chem. Soc. 123, 5549 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Majumdar, N., Gergel-Hackett, N., Bean, J.C. et al. The electrical behavior of nitro oligo(phenylene ethynylene)’s in pure and mixed monolayers. Journal of Elec Materi 35, 140–146 (2006). https://doi.org/10.1007/s11664-006-0196-8

Download citation

Key words

  • Oligo molecule
  • nitro oligo(phenylene ethynylene) (OPE)
  • electrical behavior