Advertisement

Journal of Electronic Materials

, Volume 35, Issue 1, pp 140–146 | Cite as

The electrical behavior of nitro oligo(phenylene ethynylene)’s in pure and mixed monolayers

  • Nabanita Majumdar
  • N. Gergel-Hackett
  • J. C. Bean
  • L. R. Harriott
  • G. Pattanaik
  • G. Zangari
  • Y. Yao
  • J. M. Tour
Article

Abstract

In order to realize molecular electronic devices, molecules with electrically interesting behavior must be identified. One molecule that has potential for use in devices is an oligo(phenylene ethynylene) (OPE) molecule with nitro sidegroup(s). These “nitro” molecules have been reported to show electrical switching with memory behavior, as well as negative differential resistance (NDR). However, different research groups testing the nitro molecules in different test beds have observed different electrical behaviors. In this work, we assembled two different nitro monolayers: one completely composed of nitro molecules and the second a mixed matrix where nitro molecules were separated by dodecanethiol molecules. We used scanning tunneling microscopy to image each of the monolayers and observed that the nitro molecules were effectively inserted into the ordered dodecanethiol monolayer. We tested the electrical behavior of the pure monolayer, as well as the mixed monolayer, in our nanowell test device. The nanowell devices were fabricated on micron-size gold lines patterned on oxide-coated silicon wafers. The gold lines were covered with a silicon dioxide layer, through which a nanometer size well was milled. This nanowell device was filled with a self-assembling monolayer of organic molecules, and capped with titanium and gold. The nanowell electrical results showed switching with memory for the pure nitro monolayer, but not for the mixed monolayer. This switching behavior consisted of a molecule starting in a high conductivity state and switching to a low conductivity state upon application of a threshold voltage. The high conductivity state could only be returned by application of an opposite threshold voltage.

Key words

Oligo molecule nitro oligo(phenylene ethynylene) (OPE) electrical behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.A. Reed, J. Chen, A.M. Rawlett, D.W. Price, and J.M. Tour, Appl. Phys. Lett. 78, 3735 (2001).CrossRefGoogle Scholar
  2. 2.
    C. Li et al., Appl. Phys. Lett. 82, 645 (2003).CrossRefGoogle Scholar
  3. 3.
    I. Kratochvilova, M. Kocirik, A. Zambova, J. Mbindyo, T.E. Mollouk, and T.S. Mayer, J. Mater. Chem. 12, 2927 (2002).CrossRefGoogle Scholar
  4. 4.
    F.F. Fan, J. Yang, L. Cai, D.W. Price, Jr., S.M. Dirk, D.V. Kosynkin, Y. Yao, A.M. Rawtlett, J.M. Tour, and A.J. Bard, J. Am. Chem. Soc. 124, 5550 (2002).CrossRefGoogle Scholar
  5. 5.
    Z.J. Donhauser et al., Science 292, 2303 (2001).CrossRefGoogle Scholar
  6. 6.
    P.A. Lewis, C.E. Inman, Y. Yao, J.M. Tour, J.E. Hutchinson, and P.S. Weiss, J. Am. Chem. Soc. 126, 12214 (2004).CrossRefGoogle Scholar
  7. 7.
    Y. Selzer, L. Cai, M.A. Cabassi, Y. Yao, J.M. Tour, T.S. Mayer, and D.L. Allara, Nano Lett. 5, 61 (2005).CrossRefGoogle Scholar
  8. 8.
    N. Majumdar, N. Gergel, D. Routenberg, L.R. Harriott, J.C. Bean, B. Li, L. Pu, Y. Yao, and J.M. Tour, J. Vac. Sci. Technol., B 23, 1417 (2005).CrossRefGoogle Scholar
  9. 9.
    J.M. Tour et al., Chem.-Eur. J. 7, 5118 (2001).CrossRefGoogle Scholar
  10. 10.
    J.J. Stapleton, P. Harder, J.A. Daniel, M.D. Reinard, Y. Yao, D.W. Price, J.M. Tour, and D.L. Allara, Langmuir 19, 8245 (2003).CrossRefGoogle Scholar
  11. 11.
    Y. Qian, G. Yang, J. Yu, T.A. Jung, and G. Liu, Langmuir 19, 6056 (2003).CrossRefGoogle Scholar
  12. 12.
    M.T. Cygan, T.D. Dunbar, J.J. Arnold, L.A. Bumm, N.F. Shedlock, T.P. Burgin, L. Jones II, D.L. Allara, J.M. Tour, and P.S. Weiss, J. Am. Chem. Soc. 120, 2721 (1998).CrossRefGoogle Scholar
  13. 13.
    H. Kondoh, C. Kodama, H. Sumida, and H. Nozoye, J. Chem. Phy. 111, 1175 (1999).CrossRefGoogle Scholar
  14. 14.
    N. Gergel, N. Majumdar, K. Keyvanfar, G. Pattnaik, G. Zangari, N. Swami, L.R. Harriott, J.C. Bean, Y. Yao, and J.M. Tour, J. Vac. Sci. Technol., A 23, 880 (2005).CrossRefGoogle Scholar
  15. 15.
    Y. Selzer, L. Cai, M. Cabassi, Y. Yao, J.M. Tour, T.S. Mayer, and D. Allara, Nano Lett. 5, 61 (2005).CrossRefGoogle Scholar
  16. 16.
    Y. Karzazi, J. Cornil, and J.L. Bridas, Nanotechnology 14, 165 (2003).CrossRefGoogle Scholar
  17. 17.
    J.M. Seminario, P.A. Derosa, and J.L. Bastos, J. Am. Chem. Soc. 124, 10266 (2002).CrossRefGoogle Scholar
  18. 18.
    J.G. Kushmerick, D.B. Holt, J.C. Yang, J. Naciri, M.H. Moore, and R. Shashidhar, Phys. Rev. Lett. 89, 86802 (2002).CrossRefGoogle Scholar
  19. 19.
    W. Wang, T. Lee, and M.A. Reed, Phys. Rev. B: Condens. Matter Mater. Phys. 68, 035416 (2003).Google Scholar
  20. 20.
    X.D. Cui, X. Zarate, J. Tomfohr, O.F. Sankey, A. Primak, A.L. Moore, D. Gust, G. Harris, and S.M. Lindsay, Nanotechnology 13, 5 (2002).CrossRefGoogle Scholar
  21. 21.
    D.J. Wold and C.D. Frisbie, J. Am. Chem. Soc. 123, 5549 (2001).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2006

Authors and Affiliations

  • Nabanita Majumdar
    • 1
  • N. Gergel-Hackett
    • 1
  • J. C. Bean
    • 1
  • L. R. Harriott
    • 1
  • G. Pattanaik
    • 2
  • G. Zangari
    • 2
  • Y. Yao
    • 3
  • J. M. Tour
    • 3
  1. 1.Charles Brown Department of Electrical and Computer EngineeringUniversity of VirginiaCharlottesville
  2. 2.Department of Materials Science and EngineeringUniversity of VirginiaUSA
  3. 3.Department of Chemistry and Center for Nanoscale Science and TechnologyRice UniversityHouston

Personalised recommendations