Skip to main content
Log in

Annealing effect on the dc transport mechanism in dysprosium oxide films grown on Si substrates

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Crystalline Dy oxide thin films prepared on Si(p) substrates were annealed in vacuum and air at different temperatures and investigated by x-ray diffraction (XRD). Their capacitance-gate voltage characteristics were used to determine the charge densities in the samples and the voltage drop across the oxide layer itself in terms of gate voltage. The surface charge density was device-grade, on the order of 1011 cm−2. The dc current-voltage characteristic measurements show that the main mechanism controlling the current flow is the Richardson-Schottky (RS) mechanism. Parameters of the RS model, such as field-lowering coefficients and dynamic relative permittivity, were determined. The leakage current density of the samples was studied as a function of temperature from 293 to 400 K, and activation energies were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.M. Wang, J.X. Wu, M.S. Ma, W. Chen, Q. Fang, and J.-Y. Zhang, Microelectron. Eng. 66, 608 (2003).

    Article  CAS  Google Scholar 

  2. K.J. Hubbard and D.G. Schlom, J. Mater. Res. 11, 2757 (1996).

    CAS  Google Scholar 

  3. H. Ono, Appl. Phys. Lett. 78, 1832 (2001).

    Article  CAS  Google Scholar 

  4. H. Nohira, T. Shiraishi, T. Nakamura, K. Takahashi, M. Takeda, S. Ohmi, H. Iwai, and T. Hattori, Appl. Surf. Sci. 216, 234 (2003).

    Article  CAS  Google Scholar 

  5. L. Kepinski, M. Wolcyrz, and M. Marchewka, J. Solid State Chem. 168, 110 (2002).

    Article  CAS  Google Scholar 

  6. A.A. Dakhel, J. Alloys Compd. 388, 177 (2005).

    Article  CAS  Google Scholar 

  7. J. Kwo et al., J. Cryst. Growth 251, 645 (2003).

    Article  CAS  Google Scholar 

  8. H.B. Lal, J. Phys. C 13, 3969 (1980).

    Article  CAS  Google Scholar 

  9. K. Wandelt and C.R. Brundle, Surf. Sci. 157, 162 (1985).

    Article  CAS  Google Scholar 

  10. A.A. Dakhel, Eur. Phys. J. A 28, 59 (2004).

    Article  CAS  Google Scholar 

  11. M.D. Stamate, Thin Solid Films 372, 246 (2000).

    Article  CAS  Google Scholar 

  12. A. Goswami and R. Ramesh Varma, Thin Solid Films 28, 157 (1975).

    Article  CAS  Google Scholar 

  13. A. Goswami and R. Ramesh Varma, Thin Solid Films 22, S2 (1974).

  14. T. Wiktorczyk and C. Weslowska, Vacuum 37, 107 (1987).

    Article  CAS  Google Scholar 

  15. V.A. Rozhkov, I. Visshikh, and U. Zavedenii, Fizika 37, 682 (1994).

    Google Scholar 

  16. N.C.H. Mitra and A.L. Bhattacharyya, Phys. Status Solidi 88, 175 (1985) (a).

    Article  CAS  Google Scholar 

  17. J.C. Bailer and H.J. Emeleus, Comprehensive Inorganic Chemistry, R. Nyholm and A.F. Trotman-Dickenson, ed. (Oxford: Pergamon Press Ltd, 1973), p. 89.

    Google Scholar 

  18. E.F. Kaelble, ed., Handbook of X-rays for Diffraction, Emission, Absorption, and Microscopy (New York: McGraw-Hill, 1967), p. 17–5.

    Google Scholar 

  19. S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (New York: Wiley-Interscience, 1981).

    Google Scholar 

  20. T. Dimitrova and E. Atanassova, Solid-State Electron. 42, 307 (1998).

    Article  CAS  Google Scholar 

  21. S. Jeon, M. Takanori, A. Unno, K. Wasa, Y. Ichikawa, and H. Hwang, Vacuum 65, 19 (2002).

    Article  CAS  Google Scholar 

  22. D.A. Neamen, Semiconductor Physics and Devices—Basic Principles, 2nd ed. (New York: Irwin-McGraw-Hill Companies USA, Inc., 1997).

    Google Scholar 

  23. E. Nicollian and J.R. Brews, MOS Physics and Technology (New York: Wiley, 1982).

    Google Scholar 

  24. L. Hong-Chengi, S. Weidong, D.W. Alexander, and X.X. Xi, Appl. Phys. Lett. 73, 464 (1998).

    Article  Google Scholar 

  25. D. Landheer, J.A. Gupta, G.I. Sproule, J.P. McCaffrey, M.J. Graham, K.-C. Yang, Z.-H. Lu, and W.N. Lennard, J. Electrochem. Soc. 148 (2), G29 (2001).

  26. M. Hadano, N. Urushihara, T. Inoue, and H. Uchida, J. Alloys Compd. 293/294, 403 (1999).

    Article  Google Scholar 

  27. J.F. Read and E.W. Perkins, J. Catal. 42, 443 (1976).

    Article  CAS  Google Scholar 

  28. N. Konofaos, Microelectron. J. 35, 421 (2004).

    Article  CAS  Google Scholar 

  29. J.J. O’Dwyer, The Theory of Electrical Conduction and Breakdown in Solid Dielectrics (Oxford: Clarendon, 1973), pp. 136–138.

    Google Scholar 

  30. W.R. Harrel and J. Frey, Thin Solid Films 352, 195 (1999).

    Article  Google Scholar 

  31. S. Zafar, R.E. Jones, B. Jiang, B. White, V. Kaushik, and S. Gillespie, Appl. Phys. Lett. 73, 3533 (1998).

    Article  CAS  Google Scholar 

  32. Z.A. Weinberg, J. Appl. Phys. 53, 5052 (1982).

    Article  CAS  Google Scholar 

  33. S.A. Awan, R.D. Gould, and S. Gravano, Thin Solid Films 355/356, 456 (1999).

    Article  Google Scholar 

  34. R.D. Gould and M.S. Rahman, J. Phys. D 14, 79 (1981).

    Article  CAS  Google Scholar 

  35. P.W. May and S. Hohn, Appl. Phys. Lett. 72, 2182 (1998).

    Article  CAS  Google Scholar 

  36. B.L. Yang, P.T. Lai, and H. Wong, Microelectron. Reliab. 44, 709 (2004).

    Article  Google Scholar 

  37. N.V. Babushkina and P.V.Z. Tekhnicheskoi, Fizika 20, 151 (1996).

    Google Scholar 

  38. M. Pecovska-Gjorgjevich, N. Novkovski, and E. Atanassova, Microelectron. Reliab. 43, 235 (2003).

    Article  CAS  Google Scholar 

  39. P.C. Juan, H.C. Chou, and J.Y.M. Lee, Microelectron. Reliab. 45, 1003 (2005).

    Article  CAS  Google Scholar 

  40. G.S. Oehrlein, J. Appl. Phys. 47, 480 (1986).

    Google Scholar 

  41. V.S. Lysenko, I.P. Tyagulski, Y.V. Gomeniuk, and I.N. Osiyuk, Microelectron. Reliab. 40, 799 (2000).

    Article  Google Scholar 

  42. B.L. Yang, H. Wong, and Y.C. Cheng, Solid-State Electron. 37, 481 (1994).

    Article  CAS  Google Scholar 

  43. S. Sanyal and P. Chattopadhyay, Solid-State Electron. 45, 315 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dakhel, A.A. Annealing effect on the dc transport mechanism in dysprosium oxide films grown on Si substrates. J. Electron. Mater. 35, 1547–1551 (2006). https://doi.org/10.1007/s11664-006-0147-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-006-0147-4

Key words

Navigation