Skip to main content

Advances in pulsed-laser-deposited AIN thin films for high-temperature capping, device passivation, and piezoelectric-based RF MEMS/NEMS resonator applications


In this paper we report recent advances in pulsed-laser-deposited AIN thin films for high-temperature capping of SiC, passivation of SiC-based devices, and fabrication of a piezoelectric MEMS/NEMS resonator on Pt-metallized SiO2/Si. The AlN films grown using the reactive laser ablation technique were found to be highly stoichiometric, dense with an optical band gap of 6.2 eV, and with a surface smoothness of less than 1 nm. A low-temperature buffer-layer approach was used to reduce the lattice and thermal mismatch strains. The dependence of the quality of AlN thin films and its characteristics as a function of processing parameters are discussed. Due to high crystallinity, near-perfect stoichiometry, and high packing density, pulsed-laser-deposited AlN thin films show a tendency to withstand high temperatures up to 1600°C, and which enables it to be used as an anneal capping layer for SiC wafers for removing ion-implantation damage and dopant activation. The laser-deposited AlN thin films show conformal coverage on SiC-based devices and exhibit an electrical break-down strength of 1.66 MV/cm up to 350°C when used as an insulator in Ni/AlN/SiC metal-insulator-semiconductor (MIS) devices. Pulsed laser deposition (PLD) AlN films grown on Pt/SiO2/Si (100) substrates for radio-frequency microelectrical and mechanical systems and nanoelectrical and mechanical systems (MEMS and NEMS) demonstrated resonators having high Q values ranging from 8,000 to 17,000 in the frequency range of 2.5–0.45 MHz. AlN thin films were characterized by x-ray diffraction, Rutherford backscattering spectrometry (in normal and oxygen resonance mode), atomic force microscopy, ultraviolet (UV)-visible spectroscopy, and scanning electron microscopy. Applications exploiting characteristics of high bandgap, high bond strength, excellent piezoelectric characteristics, extremely high chemical inertness, high electrical resistivity, high breakdown strength, and high thermal stability of the pulsed-laser-deposited thin films have been discussed in the context of emerging developments of SiC power devices, for high-temperature electronics, and for radio frequency (RF) MEMS.

This is a preview of subscription content, access via your institution.


  1. 1.

    S. Strite and H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 (1992).

    Article  CAS  Google Scholar 

  2. 2.

    R.F. Davis, Proc. IEEE 79, 702 (1991).

    Article  CAS  ADS  Google Scholar 

  3. 3.

    R.D. Vispute, H. Wu, and J. Narayan, Appl. Phys. Lett. 67, 1549 (1995).

    Article  CAS  ADS  Google Scholar 

  4. 4.

    S. Iwama, K. Hayakawa, and T. Arizumi, J. Cryst. Growth 56, 265 (1982).

    Article  CAS  Google Scholar 

  5. 5.

    J.B. MacChesney, P.M. Bridenbaugh, and P.B. O’Connor, Mater. Res. Bull. 5, 783 (1970).

    Article  CAS  Google Scholar 

  6. 6.

    G.A. Slack and S.F. Bartram, J. Appl. Phys. 46, 89 (1975).

    Article  CAS  ADS  Google Scholar 

  7. 7.

    W.J. Meng, Properties of Group III Nitrides, ed. J. H. Edgar, EMIS Data Reviews Series no. N11, (London: INSPEC, 1994), pp. 22–29.

    Google Scholar 

  8. 8.

    A.T. Collins, E.C. Lightowlers, and P.J. Dean, Phys. Rev. 158, 833 (1967).

    Article  CAS  ADS  Google Scholar 

  9. 9.

    H. Okano, N. Tanaka, Y. Takahashi, T. Tanaka, K. Shibata, and S. Nakano, Appl. Phys. Lett. 64, 166 (1994).

    Article  CAS  ADS  Google Scholar 

  10. 10.

    D. Alexson et al., J. Phys. Condens. Matter 17, R637 (2005).

  11. 11.

    T.P. Chow and R. Tyagi, IEEE Trans. Electron Devices 41, 1481 (1994).

    Article  CAS  Google Scholar 

  12. 12.

    Silicon Carbide, A Review of Fundamental Questions and Applications To Current Device Technology, Vols. I and II, ed. W.J. Choyke, H.M. Matsunami, and G. Pensi (Berlin: Akademic Verlag, 1998).

    Google Scholar 

  13. 13.

    Properties of Silicon Carbide, ed. G. Harries, Emis Data Review Series, Vol. 13 (London: INSPEC, 1995).

    Google Scholar 

  14. 14.

    J.J. Sumakeris, J.R. Jenny, and A.R. Powell, MRS Bull. 30, 280 (2005).

    CAS  Google Scholar 

  15. 15.

    R.F. Davis, G. Kelner, M. Shur, J.W. Palmour, and J.A. Edmond, Proc. IEEE 79, 677 (1991).

    Article  CAS  ADS  Google Scholar 

  16. 16.

    H.L. Dunlap and O.J. Marsh, Appl. Phys. Lett. 15, 311 (1969).

    Article  CAS  Google Scholar 

  17. 17.

    S. Seshadri, G.W. Eldridge, and A.K. Agarwal, Appl. Phys. Lett. 72, 2026 (1998).

    Article  CAS  ADS  Google Scholar 

  18. 18.

    K.A. Jones, K. Xie, D.W. Eckart, M.C. Wood, V. Talyansky, R.D. Vispute, T. Venkatesan, K. Wongchotigul, and M. Spencer, J. Appl. Phys. 83, 8010 (1998).

    Article  CAS  ADS  Google Scholar 

  19. 19.

    K.A. Jones, M.A. Derenge, T.S. Zheleva, K.W. Kirchner, M.H. Ervin, and M.C. Wood, J. Electron. Mater. 29, 262 (2000).

    Article  CAS  Google Scholar 

  20. 20.

    K.A. Jones, M.A. Derenge, M.H. Ervin, P.B. Shah, J.A. Freitas, Jr., and R.D. Vispute, Phys. Status Solidi 201A, 486 (2004).

    ADS  Google Scholar 

  21. 21.

    S. Osono, Y. Uchiyama, M. Kitazoe, K. Saito, M. Hayama, A. Masuda, A. Izumi, and H. Matsumura, Thin Solid Films 430, 165 (2003).

    Article  CAS  Google Scholar 

  22. 22.

    CRC Materials Science and Engineering Handbook, 63rd ed. (Boca Raton, FL: CRC Press, 1982–1983).

  23. 23.

    F. Xu, R.A. Wolf, T. Yoshimura, and S. Trolier-McKinstry, Proceedings of 11th International Symposium on Electrets, ed. R.J. Fleming (Piscataway, NJ: IEEE, 2002), pp. 386–396.

    Chapter  Google Scholar 

  24. 24.

    G.M. Rebeiz, RF MEMS: Theory, Design, and Technology (Hoboken, NJ: John Wiley & Sons, Inc., 2003).

    Google Scholar 

  25. 25.

    A.N. Cleland, M. Pophristic, and I. Ferguson, Appl. Phys. Lett. 79, 2070 (2001).

    Article  CAS  ADS  Google Scholar 

  26. 26.

    A. Ballato, J.G. Gualtieri, and J.A. Kosinski, Proc. Ninth IEEE Intl. Symp. Appl. Ferroelectrics, 674 (1994).

  27. 27.

    T.S. Low and W. Guo, J. MEMS 4, 230 (1995).

    Google Scholar 

  28. 28.

    A.E. Wickenden, L.J. Currano, T. Takacs, J. Pulskamp, M. Dubey, S.S. Hullavarad, and R.D. Vispute, Integr. Ferroelectr. 54, 565 (2003).

    Article  CAS  Google Scholar 

  29. 29.

    S.H. Lee, J. Lee, and K. Yoon, J. Vac. Sci. Technol., A 21, 1 (2003).

    Article  CAS  ADS  Google Scholar 

  30. 30.

    C.R. Aita, J. Appl. Phys. 53, 1807 (1982).

    Article  CAS  ADS  Google Scholar 

  31. 31.

    S. Muhl, J.A. Zapien, J.M. Mendez, and E. Andrade, J. Phys. D 30, 2147 (1997).

    Article  CAS  ADS  Google Scholar 

  32. 32.

    S. Yoshida, S. Misawa, and Y. Fujii, J. Vac. Sci. Technol. 16, 990 (1979).

    Article  CAS  Google Scholar 

  33. 33.

    M.T. Duffy, C.C. Wang, and G.D. O’Clock, J. Electron. Mater. 2, 359 (1973).

    CAS  Google Scholar 

  34. 34.

    A.H. Khan, M.F. Odeh, and J.M. Meese, J. Mater. Sci. 29, 4314 (1994).

    Article  CAS  Google Scholar 

  35. 35.

    J.K. Liu, K.M. Lakin, and K.L. Wang, J. Appl. Phys. 46, 3703 (1975).

    Article  CAS  ADS  Google Scholar 

  36. 36.

    R.D. Vispute, J. Narayan, H. Wu, and K. Jagannadham, J. Appl. Phys. 77, 4724 (1995).

    Article  CAS  ADS  Google Scholar 

  37. 37.

    C.J. Scozzie, A.J. Lelis, F.B. McLean, R.D. Vispute, S. Choopun, A. Patel, R.P. Sharma, and T. Venkatesan, J. Appl. Phys. 86, 4052 (1999).

    Article  CAS  ADS  Google Scholar 

  38. 38.

    A.J. Lelis, C.J. Scozzie, F.B. McLean, B.R. Geil, R.D. Vispute, and T. Venkatesan, Mater. Res. Forum 338–342, 1137 (2000).

    Article  Google Scholar 

  39. 39.

    C.M. Zetterling, M. Ostling, K. Wongchotigul, M.G. Spencer, X. Tang, C.I. Harris, N. Nordell, and S.S. Wong, J. Appl. Phys. 82, 2990 (1997).

    Article  CAS  ADS  Google Scholar 

  40. 40.

    Pulsed Laser Deposition of Thin Films, ed. D.B. Chrisey and G.K. Hubler (New York: John Wiley & Sons, 1994).

    Google Scholar 

  41. 41.

    41.I.N. Mihailescu, E. Gyorgy, and T. Asakura (ed.), Pulsed Laser Deposition: An Overview, Springer Series in Optical Science (New York: Springer-Verlag, 1999), pp. 201–214.

    Google Scholar 

  42. 42.

    S.S. Hullavarad, R.D. Vispute, B. Varughese, S. Dhar, I. Takeuchi, and T. Venkatesan, J. Vac. Sci. Technol. A 23, 982 (2005).

    Article  CAS  ADS  Google Scholar 

  43. 43.

    R.D. Vispute, J. Narayan, and J.D. Budai, Thin Solid Films 299, 94 (1997).

    Article  CAS  Google Scholar 

  44. 44.

    S. Yamada, J. Kato, S. Tanaka, I. Suemune, A. Avramescu, Y. Aoyagi, N. Teraguchi, and A. Suzuki, Appl. Phys. Lett. 78, 3612 (2001).

    Article  CAS  ADS  Google Scholar 

  45. 45.

    I. Akasaki, H. Amano, Y. Koide, K. Kiramatsu, and N. Sawaki, J. Cryst. Growth 98, 209 (1989).

    Article  CAS  Google Scholar 

  46. 46.

    R.D. Vispute, A. Patel, R.P. Sharma, T. Venkatesan, T. Zheleva, and K.A. Jones, Mater. Res. Soc. Symp. 587, O7.4.1 (2000).

  47. 47.

    F.S. Ohuchi and R.H. French, J. Vac. Sci. Technol. A 6, 1695 (1988).

    Article  ADS  Google Scholar 

  48. 48.

    B.C. Chung and M. Gershenzon, J. Appl. Phys. 72, 651 (1992).

    Article  CAS  ADS  Google Scholar 

  49. 49.

    K. Jagannadham, A.K. Sharma, Q. Wei, R. Kalyanraman, and J. Narayan, J. Vac. Sci. Technol. A 16, 2804 (1998).

    Article  CAS  ADS  Google Scholar 

  50. 50.

    K.A. Jones, P.B. Shah, T.S. Zheleva, M.H. Ervin, M.A. Derenge, J.A. Freitas, S. Harmon, J. McGee, and R.D. Vispute, J. Appl. Phys. 96, 5613 (2004).

    Article  CAS  ADS  Google Scholar 

  51. 51.

    K.A. Jones, M.H. Ervin, P.B. Shah, M.A. Derenge, R.D. Vispute, and T. Venkatesan, and J.A. Freitas, AIP Conf. Proc. 680, 694 (2003).

    Article  CAS  ADS  Google Scholar 

  52. 52.

    T. Ohno, H. Onose, Y. Sugawara, K. Asano, T. Hayashi, and T. Yatsuo, J. Electron. Mater. 28, 180 (1999).

    Article  CAS  Google Scholar 

  53. 53.

    I.O. Usov, A.A. Suvorova, V.V. Sololov, Y.A. Kudryavtsev, and A.V. Suvorov, J. Appl. Phys. 86, 6039 (1999).

    Article  CAS  ADS  Google Scholar 

  54. 54.

    S.S. Hullavarad, R.D. Vispute, T. Venkatesan, and K.A. Jones, “Growth of TaC on SiC and AlN/SiC” (in preparation).

  55. 55.

    T. Ouisse, H.P.D. Schenk, S. Karmann, and U. Kaiser, in Proceedings of the International Conference on Silicon Carbide III-Nitrides and Related Materials-1997 Vols. 264–268, Materials Science Forum, ed. G. Pensl, H. Morkoc, B. Monemar, and E. Janzen (Ütikon, Zürich, Switzerland: Trans Tech, 1998), p. 1389.

    Google Scholar 

  56. 56.

    C. Kim, I.K. Robinson, J. Myoung, K.H. Shim, and K. Kim, J. Appl. Phys. 85, 4040 (1999).

    Article  CAS  ADS  Google Scholar 

  57. 57.

    T.W. Weeks, Jr., D.M. Bremser, K.S. Alley, E. Carlson, W.G. Perry, and R.F. Davis, Appl. Phys. Lett. 70, 2735 (1997).

    Article  Google Scholar 

  58. 58.

    S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (New York: Wiley, 1981), p. 402.

    Google Scholar 

  59. 59.

    Chanana et al., Appl. Phys. Lett. 77, 2560 (2000).

    Article  CAS  ADS  Google Scholar 

  60. 60.

    R. Bathe et al., Thin Solid Films 398, 575 (2001).

    Article  Google Scholar 

  61. 61.

    N. Reeves, E. Muzio, S.S. Hullavarad, R.D. Vispute, T. Venkatesan, B. Geil, A. Lelis, D. Habersat, and C.Z. Scozzie, “AIN Film on SiC Device Side Walls,” PEER-MERIT (University of Maryland, College Park, MD, 2002).

    Google Scholar 

  62. 62.

    B. Nagaraj, S.S. Hullavarad, R.D. Vispute, T. Venkatesan, A. Lelis, D. Habersat, and C.J. Scozzie, “Dielectric Properties of Sputtered AIN Thin Films on SiC-Based Devices” (under preparation).

  63. 63.

    L.J. Currano, A.E. Wickenden, M. Dubey, IEEE-NANO 2003 2, 778 (2003).

    Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hullavarad, S.S., Vispute, R.D., Nagaraj, B. et al. Advances in pulsed-laser-deposited AIN thin films for high-temperature capping, device passivation, and piezoelectric-based RF MEMS/NEMS resonator applications. Journal of Elec Materi 35, 777–794 (2006).

Download citation

Key words

  • AlN
  • SiC
  • pulsed laser deposition
  • passivation
  • dopant activation