Skip to main content
Log in

GaN/AIN multiple quantum wells grown on GaN-AIN waveguide structure by metalorganic vapor-phase epitaxy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

High-optical-confinement waveguide structure based on nitride semiconductors is proposed and demonstrated for the first time with metal organic vaporphase epitaxy. The waveguide structure composed of 1-µm-thick AIN cladding layer, 2-µm-thick GaN guiding layer, and 40 periods of GaN/AIN multiple quantum wells (MQWs) was grown using optimized growth conditions for each layer. For improved material quality, the two-step growth technique using low-temperature AIN and GaN nucleation layers was utilized to reduce the stress induced by lattice mismatch between each layer. The high-optical-confinement structure could therefore be grown with high quality, leading to a successful observation of inter-sub-band absorption in GaN/AIN MQWs. The inter-sub-band absorption wavelength observed in such structure is in good agreement with that of MQWs grown on GaN layer, showing that the proposed waveguide structure can be used as a standard structure for optical devices based on inter-sub-band absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Rücker, E. Molinari, and P. Lugli, Phys. Rev. B: Condens. Matter Mater. Phys. 45, 6747 (1992).

    Google Scholar 

  2. N. Suzuki and N. Iizuka, Jpn. J. Appl. Phys. 36, L1006 (1997).

    Google Scholar 

  3. T. Asano and S. Noda, Jpn. J. Appl. Phys. 37, 6020 (1998).

    Article  CAS  Google Scholar 

  4. N. Iizuka, K. Kaneko, N. Suzuki, T. Asano, S. Noda, and O. Wada, Appl. Phys. Lett. 77, 648 (2000).

    Article  CAS  ADS  Google Scholar 

  5. J.D. Heber, C. Gmachl, H.M. Ng, and A.Y. Cho, Appl. Phys. Lett. 81, 1237 (2002).

    Article  CAS  ADS  Google Scholar 

  6. J.H. Smet, L.H. Peng, Y. Hirayama, and C.G. Fonstad, Appl. Phys. Lett. 64, 986 (1994).

    Article  CAS  ADS  Google Scholar 

  7. A. Neogi, T. Mozume, H. Yoshida, and O. Wada, IEEE Photonic Technology Letters 11, 632 (1999).

    Article  Google Scholar 

  8. R. Akimoto, Y. Kinpara, K. Akita, F. Sasaki, and S. Kobayashi, Appl. Phys. Lett. 78, 580 (2001).

    Article  CAS  ADS  Google Scholar 

  9. C. Gmachl, H.M. Ng, S.-N.G. Chu, and A.Y. Cho, Appl. Phys. Lett. 77, 3722 (2000).

    Article  CAS  ADS  Google Scholar 

  10. K. Kishino, A. Kikuchi, H. Kanazawa, and T. Tachibana, Appl. Phys. Lett. 81, 1803 (2002).

    Article  CAS  Google Scholar 

  11. N. Iizuka, K. Kaneko, and N. Suzuki, Appl. Phys. Lett. 81, 1803 (2002).

    Article  CAS  ADS  Google Scholar 

  12. I. Waki, C. Kumtornkittikul, Y. Shimogaki, and Y. Nakano, Appl. Phys. Lett. 82 4465 (2003) and Errata, Appl. Phys. Lett. 84, 3703 (2004).

    Article  CAS  ADS  Google Scholar 

  13. N. Iizuka, K. Kaneko, and N. Suzuki, Electron. Lett. 40, 962 (2004).

    Article  Google Scholar 

  14. N. Iizuka, K. Kaneko, and N. Suzuki, Opt. Express 13, 3835 (2005).

    Article  CAS  ADS  Google Scholar 

  15. A. Neogi, H. Yoshida, T. Mozume, and O. Wada, J. Appl. Phys. 85, 3352 (1999).

    Article  CAS  ADS  Google Scholar 

  16. T. Asano, M. Tamura, S. Yoshizawa, and S. Noda, Appl. Phys. Lett. 77, 19 (2000).

    Article  CAS  ADS  Google Scholar 

  17. H. Yoshida, T. Mozume, A. Neogi, and O. Wada, Electron. Lett. 35, 1103 (1999).

    Article  CAS  Google Scholar 

  18. N. Iizuka, K. Kaneko, and N. Suzuki, Electron. Lett. 40, 962 (2004).

    Article  Google Scholar 

  19. H. Amano, T. Asaki, and I. Akasaki, Jpn. J. Appl. Phys. Lett. 29, 205 (1990).

    Article  Google Scholar 

  20. S. Nakamura, Jpn. J. Appl. Phys. 30, L1705 (1991).

    Google Scholar 

  21. Y. Ohba and A. Hatano, Jpn. J. Appl. Phys. 35, L1013 (1996).

    Google Scholar 

  22. Y. Ohba, H. Yoshida, and R. Sato, Jpn. J. Appl. Phys. 36, L1565 (1997).

    Google Scholar 

  23. Y. Ishihara, J. Yamamoto, M. Kurimoto, T. Takano, T. Honda, and H. Kawanishi, Jpn. J. Appl. Phys. 38, L1296 (1999).

    Google Scholar 

  24. Q. Paduano and D. Weyburne, Jpn. J. Appl. Phys. 42, 1590 (2003).

    Article  CAS  Google Scholar 

  25. M. Miyamura, K. Tachibana, and Y. Arakawa, Phys. Status Solidi (a) 192, 33 (2002).

    Article  CAS  ADS  Google Scholar 

  26. D. Leonard, K. Pond, and P.M. Petroff, Phys. Rev. B: Condens. Matter Mater. Phys. 50, 11687 (1994).

    CAS  ADS  Google Scholar 

  27. S. Nakamura, T. Mukai, M. Senoh, and H. Iwasa, Jpn. J. Appl. Phys. 31, L139 (1992).

    Google Scholar 

  28. N. Suzuki and N. Iizuka, Jpn. J. Appl. Phys. 38, L363 (1999).

    Google Scholar 

  29. C. Kumtornkittikul, M. Sugiyama, Y. Shimogaki, and Y. Nakano, Jpn. J. Appl. Phys. (submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumtornkittikul, C., Sugiyama, M. & Nakano, Y. GaN/AIN multiple quantum wells grown on GaN-AIN waveguide structure by metalorganic vapor-phase epitaxy. J. Electron. Mater. 35, 744–749 (2006). https://doi.org/10.1007/s11664-006-0132-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-006-0132-y

Key words

Navigation