Skip to main content
Log in

Valency configuration of transition metal impurities in ZnO

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We use the self-interaction corrected local spin-density approximation to investigate the ground state valency configuration of transition metal (TM=Mn, Co) impurities in n- and p-type ZnO. We find that in pure Zn1−xTMxO, the localized TM2+ configuration is energetically favored over the itinerant d-electron configuration of the local spin density (LSD) picture. Our calculations indicate furthermore that the (+/0) donor level is situated in the ZnO gap. Consequently, for n-type conditions, with the Fermi energy εF close to the conduction band minimum, TM remains in the 2+ charge state, while for p-type conditions, with εF close to the valence band maximum, the 3+ charge state is energetically preferred. In the latter scenario, modeled here by co-doping with N, the additional delocalized d-electron charge transfers into the entire states at the top of the valence band, and hole carriers will only exist, if the N concentration exceeds the TM impurity concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar’, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger, Science 294, 1488 (2001).

    Article  PubMed  CAS  ADS  Google Scholar 

  2. S.J. Pearton et al., Appl. Phys. Lett. 93, 1 (2003).

    CAS  Google Scholar 

  3. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).

    Article  PubMed  CAS  ADS  Google Scholar 

  4. T. Fukumura, M. Zhengwu, J. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara, and H. Koinuma, Appl. Phys. Lett. 78, 958 (2001).

    Article  CAS  ADS  Google Scholar 

  5. A.S. Risbud, N.A. Spaldin, Z.Q. Chen, S. Stemmer, and R. Seshadri, Phys. Rev. B: Condens. Matter Mater. Phys. 68, 205202 (2003).

    ADS  Google Scholar 

  6. S.W. Yoon, S.-B. Cho, S.C. We, S. Yoon, B.J. Suh, H.K. Song, and Y.J. Shin, J. Appl. Phys. 93, 7879 (2003).

    Article  CAS  ADS  Google Scholar 

  7. S.W. Jung, S.-J. An, G.-C. Yi, C.U. Jung, S.-I. Lee, and S. Cho, Appl. Phys. Lett. 80, 4561 (2002).

    Article  CAS  ADS  Google Scholar 

  8. P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, and G.A. Gehring, Nat. Mater. 2, 673 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. H.-T. Lin, T.-S. Chin, J.-C. Shih, S.-H. Lin, T.-M. Hong, R.-T. Huang, F.-R. Chen, and J.-J. Kai, Appl. Phys. Lett. 85, 621 (2004).

    Article  CAS  ADS  Google Scholar 

  10. M.H.F. Sluiter, Y. Kawazoe, P. Sharma, A. Inoue, A.R. Raju, C. Rout, and U.V. Waghmare, Phys. Rev. Lett. 94, 187204 (2005).

    Article  PubMed  ADS  CAS  Google Scholar 

  11. Y.M. Kim, M. Yoon, I.-W. Park, Y.J. Park, and Jong H. Lyou, Solid State Commun. 129, 175 (2004).

    Article  CAS  Google Scholar 

  12. G. Lawes, A. P. Ramirez, A. S. Risbud, and R. Seshadri, cond-mat/0403196v1 (2004).

  13. T. Fukumura, H. Toyasaki, and Y. Yamada, Semicond. Sci. Technol. 20, S103 (2005).

    Google Scholar 

  14. T. Fukumura, Y. Yamada, H. Toyasaki, T. Hasegawa, H. Koinuma, and M. Kawasaki, Appl. Surf. Sci. 223, 62 (2004).

    Article  CAS  ADS  Google Scholar 

  15. S.J. Pearton, W.H. Heo, M. Ivill, D.P. Norton, and T. Steiner, Semicond. Sci. Technol. 19, R59 (2004).

    Google Scholar 

  16. R. Janisch, P. Gopal, and N.A. Spaldin, J. Phys. Condens. Matter 17, R657 (2005).

  17. K. Sato and H. Katayama-Yoshida, Semicond. Sci. Technol. 17, 367 (2002).

    Article  CAS  ADS  Google Scholar 

  18. N.A. Spaldin, Phys. Rev. B: Condens. Matter Mater. Phys. 69, 125201 (2004).

    ADS  Google Scholar 

  19. A. Svane, Phys. Rev. B: Condens. Matter Mater. Phys. 53, 4275 (1996).

    CAS  ADS  Google Scholar 

  20. W.M. Temmerman, A. Svane, Z. Szotek, and H. Winter, in Electronic Density Functional Theory: Recent Progress and New Directions, eds. J.F. Dobson, G. Vignale, and M.P. Das (New York: Plenum, 1998), p. 327.

    Google Scholar 

  21. A. Zunger, J.P. Perdew, and G.L. Oliver, Solid State Commun. 34, 933 (1980), J.P. Perdew and A. Zunger, Phys. Rev. B: Condens. Matter Mater. Phys. 23, 5048 (1981).

    Article  CAS  Google Scholar 

  22. T. Fukumura, A. Zhengwu, J. Ohtomo, H. Koinuma, and M. Kawasaki, Appl. Phys. Lett. 75, 3366 (1999).

    Article  CAS  ADS  Google Scholar 

  23. W.M. Temmerman, Z. Szotek, and H. Winter, Phys. Rev. B: Condens. Matter Mater. Phys. 47, 1184 (1993).

    CAS  ADS  Google Scholar 

  24. P.B. Dorain, Phys. Rev. 112, 1058 (1985).

    Article  Google Scholar 

  25. S.C. Wi et al., Phys. Status Solidi (b) 241, 1529 (2004).

    Article  CAS  ADS  Google Scholar 

  26. L. Petit, T.C. Schulthess, A. Svane, Z. Szotek, W.M. Temmerman, and A. Janotti, Phys. Rev. B: Condens. Matter Mater. Phys. 73, 045107 (2006).

    ADS  Google Scholar 

  27. O. Madelung, Semiconductors: Data Handbook, (Berlin: Springer-Verlag, 2004); D.A. Bonnell et al., J. Vac. Sci. Technol. B 9, 551 (1991).

    Google Scholar 

  28. T. Dietl, Semicond. Sci. Technol. 17, 377 (2002).

    Article  CAS  ADS  Google Scholar 

  29. M. Joseph, H. Tabata, and T. Kawai, Jpn. J. Appl. Phys. 38, L1205 (1999).

    Google Scholar 

  30. T. Yamamoto and K. Hatayama-Yoshida, Jpn. J. Appl. Phys. 38, L166 (1998).

    Google Scholar 

  31. D.P. Norton, S.J. Pearton, A.F. Hebard, N. Theodoropoulo, L.A. Boatner, and R.G. Wilson, Appl. Phys. Lett. 82, 239 (2003).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petit, L., Schulthess, T.C., Svane, A. et al. Valency configuration of transition metal impurities in ZnO. J. Electron. Mater. 35, 556–561 (2006). https://doi.org/10.1007/s11664-006-0099-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-006-0099-8

Key words

Navigation