Journal of Electronic Materials

, Volume 36, Issue 4, pp 397–402 | Cite as

Investigations on Electrode-Less Wet Etching of GaN Using Continuous Ultraviolet Illumination

  • R. T. Green
  • W. S. Tan
  • P. A. Houston
  • T. Wang
  • P. J. Parbrook
Special Issue Paper

Dry etching of GaN-based devices can introduce damage onto exposed layers of the semiconductor. In this paper, electrode-less wet etching of nominally undoped GaN is investigated in terms of light intensity, solution concentration, and mask geometry in order to determine the conditions required to obtain smooth surface morphologies. Using the results, surfaces were etched with a root-mean-squared (RMS) surface roughness of 1.7 nm. Furthermore, the etch selectivity is used to gain access to buried p-type layers allowing n-p diodes to be fabricated. Contact resistances to the exposed p-type layers were found to be superior to those obtained by dry etching.


GaN wet etching dry etching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The material used in this work was grown using an EPSRC grant through the National Centre for III-V Technologies at Sheffield University. One of the authors (RTG) also acknowledges funding of a studentship from the EPSRC.


  1. 1.
    Y.F. Wu, A. Saxler, M. Moore, R.P. Smith, S. Sheppard, P.M. Chavarkar, T. Wisleder, U.K. Mishra, P. Parikh, IEEE Electron. Dev. Lett. 25, 117 (2004)CrossRefGoogle Scholar
  2. 2.
    J.J Huang, M. Hattendorf, M. Feng, D.J.H Lambert, B.S. Shelton, M.M. Wong, U. Chowdhury, T.G. Zhu, H.K. Kwon, R.D. Dupuis, Electron. Lett. 36, 1239 (2000)CrossRefGoogle Scholar
  3. 3.
    GaN and Related Materials II (Amsterdam: Gordon and Breach Publishers, 2000), vol. 7, pp. 601–662Google Scholar
  4. 4.
    J.M. Lee, K.M. Chang, S.W. Kim, C. Huh, I.H. Lee, S.J. Park, J. Appl. Phys. 87, 7667 (2000)CrossRefGoogle Scholar
  5. 5.
    L.H. Peng, C.W. Chuang, J.K. Ho, C.N. Huang, C.Y. Chen, Appl. Phys. Lett. 75, 939 (1998)CrossRefGoogle Scholar
  6. 6.
    J. Škriniarová, A. Van Der Hart, H.P. Bochem, A. Fox, P. KordoŠ, Mater. Eng. B91–92, 298 (2002)CrossRefGoogle Scholar
  7. 7.
    C. Youtsey, I. Adesida, L.T. Romano, G. Bulman, Appl. Phys. Lett. 72, 560 (1998)CrossRefGoogle Scholar
  8. 8.
    J.A. Bardwell, I.E. Foulds, J.B. Webb, H. Tang, J. Fraser, S. Moisa, S.J. Rolfe, J. Electron. Mater. 28, 24 (1999)CrossRefGoogle Scholar
  9. 9.
    J.A. Bardwell, J.B. Webb, H. Tang, J. Fraser, S. Moisa, J. Appl. Phys. 89, 4142 (2001)CrossRefGoogle Scholar
  10. 10.
    J.M. Hwang, K.Y. Ho, Z.H. Hwang, W.H. Hung, Kei May Lau, H.L. Hwang, Superlattices Microstruct. 35, 45 (2004)CrossRefGoogle Scholar
  11. 11.
    D.A. Wood, P.J. Parbrook, R.J. Lynch, M. Lada, A.G. Cullis, Phys. Status Solidi A: Appl. Res.188, 641 (2001)CrossRefGoogle Scholar
  12. 12.
    H. Xing, D.S. Green, H. Yu, T. Mates, P. Kozodoy, S. Keller, S.P. Denbaars, U.K. Mishra, Jpn. J. Appl. Phys. 42, 50 (2003)CrossRefGoogle Scholar
  13. 13.
    C. Youtsey, L.T. Romano, I. Adesida, Appl. Phys. Lett. 73, 797 (1998)CrossRefGoogle Scholar
  14. 14.
    C.Y. Fang, W.J. Huang, E.Y. Chang, C.F. Lin, M.S. Feng, Jpn. J. Appl. Phys. 42, 4207 (2003)CrossRefGoogle Scholar
  15. 15.
    S. Nakamura, N. Iwasa, M. Senoh, T. Mukai, Jpn. J. Appl. Phys. 31, 1258 (1992)CrossRefGoogle Scholar
  16. 16.
    J. Neugebauer, C.G. Van de Walle, Appl. Phys. Lett. 68, 1829 (1996)CrossRefGoogle Scholar
  17. 17.
    A.Y. Polyakov et al. Appl. Phys. Lett. 79, 1834 (2001)CrossRefGoogle Scholar

Copyright information

© TMS 2007

Authors and Affiliations

  • R. T. Green
    • 1
  • W. S. Tan
    • 1
    • 2
  • P. A. Houston
    • 1
  • T. Wang
    • 1
  • P. J. Parbrook
    • 1
  1. 1.Department of Electronic and Electrical EngineeringUniversity of SheffieldSheffieldUnited Kingdom
  2. 2.SHARP Laboratories of EuropeOxfordUnited Kingdom

Personalised recommendations