Skip to main content
Log in

Growth of II-IV-V2 chalcopyrite nitrides by molecular beam epitaxy

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Synthesis of crystalline MgGeN2 thin solid films is achieved using the technique of molecular beam epitaxy (MBE). The details of the epitaxial process are described. The microstructures of these films are investigated by both x-ray diffraction (XRD) and cross-sectional transmission electron microscopy (XTEM). Comparison of the lattice structure with powder diffraction standards suggests the lattice structure may be orthorhombic with a high degree of texture. Morphology is evaluated by atomic force microscopy, and a periodic pattern of growth mounds is observed. A formalism for dynamical roughening is applied to quantify the mounded surface features. Mounds are found to have an average spacing of 235 nm, and the surface exhibits a saturation value of 22 nm for the root mean correlated height difference. Diffusion bias is discussed as a mechanism for the formation of surface mounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.F. Grekov, G.P. Dubrovskii, and A.M. Zykov, Inorganic Materials (translated from Russian) 15, 1546 (1979).

    Google Scholar 

  2. S. Limpijumnong, W. Lambrecht, B. Segall, and K. Kim, Materials Research Society Symp. Proc., ed. F. Ponce, T. Moustakas, I. Akasaki, and B. Monemar (Pittsburgh, PA: Materials Research Society, 1997), vol. 449, pp. 905–910.

    Google Scholar 

  3. C. Kilic and A. Zunger, Appl. Phys. Lett. 83, 2007 (2003).

    Article  CAS  Google Scholar 

  4. C. Kilic and A. Zunger, Phys. Rev. B 68, 075201-1 (2003).

  5. R. Viennois, T. Taliercio, V. Potin, A. Errebbahi, B. Gil, S. Charar, A. Haidoux, and J.-C. Tedenac, Mater. Sci. Eng. B 82, 45 (2001).

    Article  Google Scholar 

  6. G.A. Verozubova, A.I. Gribenyukov, V.V. Korotkova, and M.P. Ruzaikin, Mater. Sci. Eng. B 48, 191 (1997).

    Article  Google Scholar 

  7. A.G. Petukhov, W.R.L. Lambrecht, and B. Segall, Phys. Rev. B 49, 4549 (1994).

    Article  CAS  Google Scholar 

  8. L.D. Zhu, P.H. Maruska, P.E. Norris, P.W. Yip, and L.O. Bouthillette, MRS Int. J. Nitride Semiconductor Res. 4S1, G3.8 (1999), pp. 168–172.

    Google Scholar 

  9. A. Osinsky, V. Fuflyigin, L.D. Zhu. A.B. Goulakov, J.W. Graff, and E.F. Schubert, Proc. 2000 IEEE/Cornell Conf. on High Performance Devices (Ithaca, NY: IEEE Electron Devices Society, 2000), p. 168.

    Book  Google Scholar 

  10. C.H.L. Goodman, Nature 179, 828 (1957).

    Article  CAS  Google Scholar 

  11. M. Maunaye and J. Lang, Mater. Res. Bull. 5, 793 (1970).

    Article  CAS  Google Scholar 

  12. M. Wintenberger, M. Maunaye, and Y. Laurent, Mater. Res. Bull. 8, 1049 (1973).

    Article  CAS  Google Scholar 

  13. W.L. Larson, H.P. Maruska, and D.A. Stevenson, J. Electrochem. Soc.: Solid-State Sci. Technol.-Brief Comm. 121, 1673 (1974).

    CAS  Google Scholar 

  14. S. Limpijumnong, S.N. Rashkeev, and W.R.L. Lambrecht, MRS Internet J. Nitride Semicond. Res. 4S1, G6.11 (1999).

    Google Scholar 

  15. S.J. Pearton et al., J. Appl. Phys. 92, 2047 (2002).

    Article  CAS  Google Scholar 

  16. R.J. Bruls, H.T. Hintzen, G. de With, and R. Metselaar, J. Eur. Ceram. Soc. 21, 263 (2001).

    Article  CAS  Google Scholar 

  17. T. Moustakas, Mater. Res. Soc. Symp. Proc. 395, 111 (1996).

    CAS  Google Scholar 

  18. N. Grandjean, J. Massies, and M. Leroux, Appl. Phys. Lett. 69, 2071 (1996).

    Article  CAS  Google Scholar 

  19. J.E. Van Nostrand, R.L. Hengehold, K.D. Leedy, J.T. Grant, J.L. Brown, and Q.-H. Xie, J. Appl. Phys. 86, 3120 (1999).

    Article  Google Scholar 

  20. J. Lapujoulade, Surface Sci. Rep. 20, 191 (1994).

    Article  CAS  Google Scholar 

  21. F. Family and T. Vicsek, J. Phys. A 18, L75 (1985).

  22. F. Family, Physica A 168, 561 (1990).

    Article  Google Scholar 

  23. D.E. Wolf and J. Villain, Europhys. Lett. 13, 389 (1990).

    CAS  Google Scholar 

  24. R.J. Bruls, H.T. Hintzen, R. Metselaar, and C.-K. Loong, J. Phys. Chem. Solids 61, 1285 (2000).

    Article  CAS  Google Scholar 

  25. D.C. Reynolds, D.C. Look, B. Jogai, J.E. Van Nostrand, R. Jones, and J. Jenny, Solid State Comm. 106, 701 (1998).

    Article  CAS  Google Scholar 

  26. J. Lapujoulade, Surface Sci. Rep. 20, 191 (1994).

    Article  CAS  Google Scholar 

  27. C. Thompson, G. Palasantzas, Y.P. Feng, S.K. Sinha, and J. Krim, Phys. Rev. B 49, 4902 (1994).

    Article  CAS  Google Scholar 

  28. J.E. Van Nostrand, S.J. Chey, M.-A. Hasan, D.G. Cahill, and J.E. Greene, Phys. Rev. Lett. 74, 1127 (1995).

    Article  Google Scholar 

  29. M.D. Johnson, C. Orme, A.W. Hunt, D. Graff, J. Sudijono, L.M. Sander, and B.G. Orr, Phys. Rev. Lett. 72, 116 (1994).

    Article  CAS  Google Scholar 

  30. J. Villain, J. Phys. I 1, 19 (1991).

    Article  Google Scholar 

  31. G. Ehrlich and F.G. Hudda, J. Chem. Phys. 44, 1039 (1966).

    Article  CAS  Google Scholar 

  32. J. Krim and G. Palasantzas, Int. J. Modern Phys. B 9, 599 (1995).

    Article  CAS  Google Scholar 

  33. E. Calleja, M.A. Sanchez-Garcia, F.J. Sanchez, F. Calle, F.B. Naranjo, E. Munoz, U. Jahn, and K. Ploog, Phys. Rev. B 62, 16,826 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Nostrand, J.E., Albrecht, J.D., Cortez, R. et al. Growth of II-IV-V2 chalcopyrite nitrides by molecular beam epitaxy. J. Electron. Mater. 34, 1349–1356 (2005). https://doi.org/10.1007/s11664-005-0261-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0261-8

Key words

Navigation