Skip to main content
Log in

Thermal oxidation of polycrystalline and single crystalline aluminum nitride wafers

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Two types of aluminum nitride (AlN) samples were oxidized in flowing oxygen between 900°C and 1150°C for up to 6 h—highly (0001) textured polycrystalline AlN wafers and low defect density AlN single crystals. The N-face consistently oxidized at a faster rate than the Al-face. At 900°C and 1000°C after 6 h, the oxide was 15% thicker on the N-face than on the Al-face of polycrystalline AlN. At 1100°C and 1150°C, the oxide was only 5% thicker on the N-face, as the rate-limiting step changed from kinetically-controlled to diffusion-controlled with the oxide thickness. A linear parabolic model was established for the thermal oxidation of polycrystalline AlN on both the Al- and N-face. Transmission electron microscopy (TEM) confirmed the formation of a thicker crystalline oxide film on the N-face than on the Al-face, and established the crystallographic relationship between the oxide film and substrate. The oxidation of high-quality AlN single crystals resulted in a more uniform colored oxide layer compared to polycrystalline AlN. The aluminum oxide layer was crystalline with a rough AlN/oxide interface. The orientation relationship between AlN and Al2O3 was (0001) AlN//(\(10\bar 10\)) Al2O3 and (\(1\bar 100\)) AlN//(\(01\bar 12\)) Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Luo, J.W. Johnson, O. Kryliouk, F. Ren, S.J. Pearton, S.N.G. Chu, A.E. Nikolaev, Y.V. Melnik, V.A. Dmitriev, and T.J. Anderson, Solid-State Electron. 46, 573 (2002).

    Article  CAS  Google Scholar 

  2. G.A. Slack, J. Phys. Chem. Solids 34, 321 (1973).

    Article  CAS  Google Scholar 

  3. D.K. Gaskill, L.B. Rowland, and K. Doverspike, EMIS Datarev. Ser. 11, 101 (1994).

    CAS  Google Scholar 

  4. S. Strite and H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 (1992).

    Article  CAS  Google Scholar 

  5. S. Krukowski, M. Leszczynski, and S. Porowski, EMIS Datarev. Ser. 23, 21 (1999).

    CAS  Google Scholar 

  6. O. Ambacher, J. Phys. D: Appl. Phys. 31, 2653 (1998).

    Article  CAS  Google Scholar 

  7. B. Monemar, J. Mater. Sci.: Mater. Electron. 10, 227 (1999).

    Article  CAS  Google Scholar 

  8. J.A. Powell, J.B. Petit, J.H. Edgar, I.G. Jenkins, L.G. Matus, W.J. Choyke, L. Clemen, M. Yoganathan, J.W. Yang, and P. Pirouz, Appl. Phys. Lett. 59, 183 (1991).

    Article  CAS  Google Scholar 

  9. J.H. Harris, R.A. Youngman, and R.G. Teller, J. Mater. Res. 5, 1763 (1990).

    CAS  Google Scholar 

  10. G.A. Slack, L.J. Schowalter, D. Morelli, and J.A. Freitas, Jr., J. Cryst. Growth 246, 287 (2002).

    Article  CAS  Google Scholar 

  11. Y. Geng and M.G. Norton, J. Mater. Res. 14, 2708 (1999).

    CAS  Google Scholar 

  12. J.D. Plummer, M.D. Deal, and P.B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling (Englewood Cliffs, NJ: Prentice-Hall, 2000), pp. 287–364.

    Google Scholar 

  13. Y. Song, S. Dhar, L.C. Feldman, G. Chung, and J.R. Williams, J. Appl. Phys. 95, 4953 (2004).

    Article  CAS  Google Scholar 

  14. P. Boch, J.C. Glandus, J. Jarrige, J.P. Lecompte, and J. Mexmain, Ceram. Int. 8, 34 (1982).

    Article  CAS  Google Scholar 

  15. Z. Gu, J.H. Edgar, C.M. Wang, and D.W. Coffey, J. Mater. Res., submitted for publication.

  16. M.G. Norton, T.K.A. Yang, P. Kotula, K.L. Rugg, S. McKernan, and C.B. Carter, Mater. Res. Soc. Symp. Proc. 203, 240 (1991).

    Google Scholar 

  17. H.-E. Kim and A.J. Moorhead, J. Am. Ceram. Soc. 77, 1037 (1994).

    Article  CAS  Google Scholar 

  18. D. Mistele, T. Rotter, F. Fedler, H. Klausing, O.K. Semchinova, J. Stemmer, J. Aderhold, and J. Graul, Mater. Res. Soc. Symp. Proc. 622, T6.20.1 (2000).

  19. L. Liu and J.H. Edgar, J. Cryst. Growth 220, 243 (2000).

    Article  CAS  Google Scholar 

  20. Y. Shi, Z.Y. Xie, L.H. Liu, B. Liu, J.H. Edgar, and M. Kuball, J. Cryst. Growth 233, 177 (2001).

    Article  CAS  Google Scholar 

  21. J.H. Edgar, L. Liu, B. Liu, D. Zhuang, J. Chaudhuri, M. Kuball, and S. Rajasingam, J. Cryst. Growth 246, 187 (2002).

    Article  CAS  Google Scholar 

  22. B. Liu, J.H. Edgar, Z. Gu, D. Zhuang, B. Raghothamachar, M. Dudley, A. Sarua, M. Kuball, and H.M. Meyer III, MRS Internet J. Nitride Semicond. Res. 9, 6 (2004).

    Google Scholar 

  23. D. Zhuang, J.H. Edgar, L. Liu, B. Liu, and L. Walker, MRS Internet J. Nitride Semicond. Res. 7, 4 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, Z., Edgar, J.H., Speakman, S.A. et al. Thermal oxidation of polycrystalline and single crystalline aluminum nitride wafers. J. Electron. Mater. 34, 1271–1279 (2005). https://doi.org/10.1007/s11664-005-0250-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0250-y

Key words

Navigation