Skip to main content
Log in

Realization of intrinsic p-type ZnO thin films by metal organic chemical vapor deposition

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

P-type ZnO thin films were grown on sapphire substrates with and without nitrous oxide (N2O) by metal organic chemical vapor deposition (MOCVD). The intrinsic p-type ZnO films were achieved by controlling the Zn:O ratio in the range of 0.05–0.2 without N2O flow. Secondary ion mass spectroscopy (SIMS) showed that the films contained little or no nitrogen (N) impurities for all samples. The p-type behavior of the samples should be due to the intrinsic acceptor-like defects VZn, for ZnO film grown without nitrous oxide, and N, occupying O sites as acceptors for ZnO film grown with nitrous oxide. The best p-type ZnO film has low resistivity of 0.369 Ω-cm, high carrier density of 1.62×1019 cm−3, and mobility of 3.14 cm2/V-s. The obtained p-type ZnO films possess a transmittance of nearly 100% in the visible region and strong near-band-edge emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.W. Sun and H.S. Kwok, J. Appl. Phys. 86, 408 (1999).

    Article  CAS  Google Scholar 

  2. S.B. Zhang, S.H. Wei, and Alex Zunger, J. Appl. Phys. 83, 3192 (1998).

    Article  CAS  Google Scholar 

  3. D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, and G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002).

    Article  CAS  Google Scholar 

  4. M. Joseph, H. Tabata, and T. Kawai, Jpn. J. Appl. Phys. 38, L1205 (1999).

    Google Scholar 

  5. Z.Z. Ye, Z.G. Fei, J.G. Lu, Z.H. Zhang, L.P. Zhu, B.H. Zhao, and J.Y. Huang, J. Cryst. Growth 265, 127 (2004).

    Article  CAS  Google Scholar 

  6. X. Li, Y. Yan, T.A. Gessert, C.L. Perkins, D. Young, C. DeHart, M. Young, and T.J. Coutts, J. Vac. Sci. Technol. A 21, 4 (2003).

    Google Scholar 

  7. S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, H.S. Kwok, X.H. Zhang, and S.J. Chua, J. Appl. Phys. to be published.

  8. S.B. Zhang, S.H. Wei, and Alex Zunger, Phys. Rev. B 63, 075205 (2001).

    Article  Google Scholar 

  9. E.C. Lee, Y.S. Kim, Y.G. Jin, and K.J. Chang, Phys. Rev. B 64, 085120 (2001).

    Article  Google Scholar 

  10. Y. Ma, G.T. Du, S.R. Yang, Z.T. Li, B.J. Zhao, X.T. Yang, T.P. Yang, Y.T. Zhang, and D.L. Liu, J. Appl. Phys. 95, 6268 (2004).

    Article  CAS  Google Scholar 

  11. T.V. Butkhuzi, A.V. Bureyev, A.N. Georgobiani, N.P. Kekelidze, and T.G. Khulordava, J. Cryst. Growth 117, 366 (1992).

    Article  CAS  Google Scholar 

  12. A.N. Georgobiani, M.B. Kotlyarevskii, V.V. Kidalov, L.S. Lepnev, and I.V. Rogozin, Inorg. Mater. 37, 1095 (2001).

    Article  CAS  Google Scholar 

  13. G. Xiong, J. Wilkinson, B. Mischuck, S. Tuzemen, K.B. Ucer, and R.T. Williams, Appl. Phys. Lett. 80, 1195 (2002).

    Article  CAS  Google Scholar 

  14. A. Kobayashi, O.F. Sankey, and John D. Dow, Phys. Rev. B 28, 61 (1983).

    Google Scholar 

  15. A.B.M.A. Ashrafi, I. Suemune, H. Kumano, and S. Tanaka, Jpn. J. Appl. Phys. 41, 1281 (2002).

    Article  Google Scholar 

  16. T. Yamamoto, Thin Solid Films 420, 100 (2002).

    Article  Google Scholar 

  17. J.M. Bian, X.M. Li, X.D. Gao, W.D. Yu, and L.D. Chen, Appl. Phys. Lett. 84, 541 (2004).

    Article  CAS  Google Scholar 

  18. H. Matsui, H. Saeki, T. Kawai, and H. Tabata, J. Appl. Phys. 95, 5882 (2004).

    Article  CAS  Google Scholar 

  19. K. Nakahara, H. Takasu, P. Fons, A. Yamada, K. Iwata, K. Matsubara, R. Hunger, and S. Niki, J. Cryst. Growth 237, 503 (2002).

    Article  Google Scholar 

  20. J. Tauc, Amorphous and Liquid Semiconductors (London: Plenum, 1974), pp. 173–178.

    Google Scholar 

  21. E.A. David and N.F. Mott, Phil. Mag. 22, 903 (1970).

    Google Scholar 

  22. J.G. Lu, Z.Z. Ye, L. Wang, J.Y. Huang, and B.H. Zhao, Mater. Sci. Semicond. Proc. 5, 491 (2003).

    Article  CAS  Google Scholar 

  23. X.Q. Wang, S.R. Yang, J.Z. Wang, M.T. Li, X.Y. Jiang, G.T. Du, X. Liu, and R.P.H. Chang, J. Cryst. Growth 226, 123 (2001).

    Article  CAS  Google Scholar 

  24. K. Vanheusden, C.H. Seagar, W.L. Warren, D.R. Tallant, and J.A. Voigt, Appl. Phys. Lett. 68, 403 (1996).

    Article  CAS  Google Scholar 

  25. H.S. Kang, J.S. Kang, J.W. Kim, and S.Y. Lee, J. Appl. Phys. 95, 1246 (2004).

    Article  CAS  Google Scholar 

  26. I. Ozerov, M. Arab, V.I. Safarov, W. Marine, S. Giorgio, M. Sentis, and L. Nanai, Appl. Surf. Sci. 226, 242 (2004).

    Article  CAS  Google Scholar 

  27. Y.M. Strzhemechny, J. Nemergut, P.E. Smith, J. Bae, D.C. Look, and L.J. Brillson, J. Appl. Phys. 94, 4256 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, S.T., Chen, B.J., Sun, X.W. et al. Realization of intrinsic p-type ZnO thin films by metal organic chemical vapor deposition. J. Electron. Mater. 34, 1172–1176 (2005). https://doi.org/10.1007/s11664-005-0247-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0247-6

Key words

Navigation