Skip to main content
Log in

Development of nano-composite lead-free electronic solders

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Inert, hybrid inorganic/organic, nano-structured chemicals can be incorporated into low melting metallic materials, such as lead-free electronic solders, to achieve desired levels of service performance. The nano-structured materials technology of polyhedral oligomeric silsesquioxanes (POSS), with appropriate organic groups, can produce suitable means to promote bonding between nano-reinforcements and the metallic matrix. The microstructures of lead-free solder reinforced with surface-active POSS tri-silanols were evaluated using scanning electron microscopy (SEM). Wettability of POSS-containing lead-free solders to copper substrate was also examined. Steady-state deformation of solder joints made of eutectic Sn-Ag solder containing varying weight fractions of POSS of different chemical moieties were evaluated at different temperatures (25°C, 100°C, and 150°C) using a rheometric solids analyzer (RSA-III). Mechanical properties such as shear stress versus simple shear-strain relationships, peak shear stress as a function of rate of simple shear strain, and testing temperature for such nano-composite solders are reported. The service reliability of joints made with these newly formulated nano-composite solders was evaluated using a realistic thermomechanical fatigue (TMF) test profile. Evolution of microstructures and residual mechanical property after different extents of TMF cycles were evaluated and compared with joints made of standard, unreinforced eutectic Sn-Ag solder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Choi, J.P. Lucas, K.N. Subramanian, and T.R. Bieler, J. Mater. Sci.: Mater. Electron. 11, 497 (2000).

    Article  CAS  Google Scholar 

  2. F. Guo, S. Choi, J.P. Lucas, and K.N. Subramanian, Soldering Surface Mount Technol. 13, 7 (2001).

    CAS  Google Scholar 

  3. S. Choi, J.G. Lee, F. Guo, T.R. Bieler, K.N. Subramanian, and J.P. Lucas, J. Minerals, Met. Mater. Soc. 53, 22 (2001).

    CAS  Google Scholar 

  4. F. Guo, J. Lee, S. Choi, J.P. Lucas, T.R. Bieler, and K.N. Subramanian, J. Electron. Mater. 30, 1073 (2001).

    CAS  Google Scholar 

  5. F. Guo, J.P. Lucas, and K.N. Subramanian, J. Mater. Sci.: Mater. Electron. 12, 27 (2001).

    Article  CAS  Google Scholar 

  6. S.M.L. Sastry, T.C. Peng, R.J. Lederich, K.L. Jerina, and C.G. Kuo, Proc. Technical Program, National Electronic Packaging and Production Conference (Des Plains, IL: NEPCON WEST, 1992), pp. 1266–1268.

    Google Scholar 

  7. C.G. Guo, S.M.L. Sastry, and K.L. Jerina, 1st Int. Conf. on Microstructural and Mechanical Properties of Aging Materials—Proc. Minerals, Metals and Materials Society Symp. (Warrendale, PA: TMS, 1993), p. 417.

    Google Scholar 

  8. J.L. Marshall and J. Calderon, Soldering Surface Mount Technol. 9, 11 (1997).

    CAS  Google Scholar 

  9. M. McCormack, S. Jin, and G.W. Kammlott, IEEE Trans. Comp. Packaging Manufacturing Technol. (CPMT), Part A 17, 452 (1994).

    Article  CAS  Google Scholar 

  10. H. Mavoori and S. Jin, J. Electron. Mater. 27, 1216 (1998).

    Article  CAS  Google Scholar 

  11. C.M. Miller, I.E. Anderson, and J.F. Smith, J. Electron. Mater. 23, 595 (1994).

    CAS  Google Scholar 

  12. C.M. Chen and S.W. Chen, J. Appl. Phys. 90, 1208 (2001).

    Article  CAS  Google Scholar 

  13. C.M.L. Wu, C.M.T. Law, D.Q. Yu, and L. Wang, J. Electron. Mater. 32, 63 (2003).

    Article  CAS  Google Scholar 

  14. C.M.L. Wu, D.Q. Yu, C.M.T. Law, and L. Wang, J. Mater. Res. 17, 3146 (2002).

    CAS  Google Scholar 

  15. F. Guo, S. Choi, T.R. Bieler, J.P. Lucas, A. Achari, M. Paruchuri, and K.N. Subramanian, Mater. Sci. Eng. A351, 190 (2003).

    CAS  Google Scholar 

  16. J.G. Lee, F. Guo, S. Choi, K.N. Subramanian, T.R. Bieler, and J.P. Lucas, J. Electron. Mater. 31, 946 (2002).

    CAS  Google Scholar 

  17. W.F. Smith, Structure and Properties of Engineering Alloys, 2nd ed., ed. R. Gibala, M. Tirrell, and C. Wert (New York: McGraw-Hill, 1993), pp. 498–509.

    Google Scholar 

  18. S.H. Phillips, T.S. Haddad, and S.J. Tomczak, Curr. Opin. Solid State Mater. Sci. 8, 21 (2004).

    Article  CAS  Google Scholar 

  19. R. Murugavel, A. Voigt, M.G. Walawalkar, and H.W. Roesky, Roesky, Chem. Rev. 96, 2205 (1996).

    Article  CAS  Google Scholar 

  20. F.J. Feher, D.A. Newman, and J.F. Walzer, J. Am. Chem. Soc. 111, 1741 (1989).

    Article  CAS  Google Scholar 

  21. S. Choi, T.R. Bieler, J.P. Lucas, and K.N. Subramanian, J. Electron. Mater. 28, 1209 (1999).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, A., Subramanian, K.N. Development of nano-composite lead-free electronic solders. J. Electron. Mater. 34, 1399–1407 (2005). https://doi.org/10.1007/s11664-005-0197-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0197-z

Key words

Navigation