Journal of Electronic Materials

, Volume 34, Issue 1, pp 19–22 | Cite as

Uniform Cr2+ doping of physical vapor transport grown CdSxSe1−x crystals

  • U. N. Roy
  • O. S. Babalola
  • J. Jones
  • Y. Cui
  • T. Mounts
  • A. Zavalin
  • S. Morgan
  • A. Burger
Regular Issue Paper

Abstract

The Cr2+ doped CdS0.8Se0.2 crystals were grown by the vertical, self-seeded, physical vapor transport (PVT) technique. Good quality, crack- and inclusion-free single crystals were grown with an average Cr2+ concentration of 5 × 1018 cm−3. Different source-to-tip distances were used to improve the segregation coefficient (Crcrystal/Crsource) of the grown crystals. It was observed that lowering the source-to-tip distance increases the segregation coefficient dramatically. With a 2-cm source-to-tip distance, good quality crystals were grown with uniform Cr2+ concentration throughout the ingot. The segregation coefficient was found to be ∼0.85. The composition of the crystals was also found to be fairly uniform along the length and across the diameter.

Key words

II-VI ternary Cr2+ doping segregation coefficient physical vapor transport (PVT) growth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.D. DeLoach, R.H. Page, G.D. Wilke, S.A. Payne, and W.F. Krupke, IEEE J. Quant. Electron. 32, 885 (1996).CrossRefGoogle Scholar
  2. 2.
    R.H. Page, K.I. Schaffers, L.D. DeLoach, G.W. Wilke, F.D. Patel, J.B. Tassano, Jr., S.A. Payne, W.F. Krupke, K.T. Chen, and A. Burger, IEEE J. Quant. Electron. 33, 609 (1997).CrossRefGoogle Scholar
  3. 3.
    J. McKay, K.L. Schepler, and G.C. Cantella, Opt. Lett. 24, 1575 (1999).Google Scholar
  4. 4.
    G. Cantwell, W.C. Harsch, H.L. Cotal, B.G. Markey, S.W.S. McKeever, and J.E. Thomas, J. Appl. Phys. 71, 2931 (1992).CrossRefGoogle Scholar
  5. 5.
    J.-O. Ndap, O.O. Adetunji, K. Chattopadhyay, C.I. Rablau, S.U. Egarievwe, X. Ma, S. Morgan, and A. Burger, J. Cryst. Growth 211, 290 (2000).CrossRefGoogle Scholar
  6. 6.
    K.L. Schepler, S. Kuck, and L. Shiozawa, J. Luminecsence 72–74, 116 (1997).CrossRefGoogle Scholar
  7. 7.
    C.H. Su, S. Feth, M.P. Volz, R. Matyi, M.A. George, K. Chottopadhyay, A. Burger, and S.L. Lehoczky, J. Cryst. Growth 207, 35 (1999).CrossRefGoogle Scholar
  8. 8.
    S. Permogorov and A. Reznitsky, J. Luminecsence 52, 201 (1992).CrossRefGoogle Scholar
  9. 9.
    J.-O. Ndap, K. Morrow, O.O. Adetunji, V.A. Johnson, K. Chattopadhyay, A. Burger, C.I. Rablau, and R.A. Page, J. Electron. Mater. 31, 802 (2002).Google Scholar
  10. 10.
    U.N. Roy, O.S. Babalola, Y. Cui, M. Groza, T. Mounts, A. Zavalin, S. Morgan, and A. Burger, J. Cryst. Growth 265, 453 (2004).CrossRefGoogle Scholar

Copyright information

© TMS-The Minerals, Metals and Materials Society 2005

Authors and Affiliations

  • U. N. Roy
    • 1
  • O. S. Babalola
    • 1
  • J. Jones
    • 1
  • Y. Cui
    • 1
  • T. Mounts
    • 1
  • A. Zavalin
    • 1
  • S. Morgan
    • 1
  • A. Burger
    • 1
  1. 1.Center of Excellence in Physics and Chemistry of MaterialsFisk UniversityNashville

Personalised recommendations