Skip to main content
Log in

Microstructural development in asymmetric processing of tantalum plate

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Sputtered tantalum (Ta) and TaN are employed as barrier layers in modern integrated circuits to enable reliable use of Cu as an interconnect material. The directional properties of sputtering Ta can result in nonuniform film thicknesses (from heavily textured plate) and unpredictable sputtering rates (from plates with through thickness texture gradients). This results in film thicknesses larger than necessary because of the sputtering being unpredictable. This presentation reports on an effort to increase textural and grain size uniformity in Ta by deforming the plate under conditions that simulate asymmetric rolling. This is accomplished by using a channel die configuration with uneven friction on the top and bottom plates so that a strong shear component is added to the plane strain condition enforced by the channel dies. Results indicate a trend towards less severe texture banding and more uniform structure in the plate processed by asymmetric friction conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.D. Magnuson and C.E. Carlston, J. Appl. Phys. 34, 3267 (1963).

    Article  CAS  Google Scholar 

  2. D. Onderdelinden, Can. J. Phys. 46, 739 (1968).

    CAS  Google Scholar 

  3. H.E. Roosendaal, Sputtering by Particle Bombardment I: Physical Sputtering of Single-element Solids, ed. Behrisch (Berlin: Springer-Verlag, 1981), pp. 219–256.

    Google Scholar 

  4. G.K. Wehner, Phys. Rev. 102, 690 (1956).

    Article  CAS  Google Scholar 

  5. R.H. Silsbee, J. Appl. Phys. 28, 1246 (1957).

    Article  Google Scholar 

  6. H. Tsuge and S. Esho, J. Appl. Phys. 52, 4391 (1981).

    Article  CAS  Google Scholar 

  7. Y.N. Zhukova, E.S. Mashkova, V.A. Molchanov, A.V. Sidorov, and W. Eckstein, Bull. Russ. Acad. Sci. 58, 1626 (1994).

    Google Scholar 

  8. W. Eckstein, E.S. Mashkova, V.A. Molchanov, and A.I. Tolmachev, Nucl. Instrum. Methods Phys. Res. B 115, 482 (1996).

    Article  CAS  Google Scholar 

  9. C.A. Michaluk, D.B. Smathers, and D.P. Field, Proc. 12 Int. Conf. on Textures of Materials, ed. J.A. Szpunar (Ottawa: NRC Research Press, 1999), pp. 1357–1362.

    Google Scholar 

  10. C.A. Michaluk, JEM 31, 2 (2002).

    CAS  Google Scholar 

  11. R.A. Vandermeer and W.B. Snyder, Metall. Trans. A 10A, 1031 (1979).

    CAS  Google Scholar 

  12. D. Raabe, G. Schlenkert, H. Weisshaupt, and K. Lücke, Mater. Sci. Technol. 10, 299 (1994).

    CAS  Google Scholar 

  13. S.I. Wright, D.P. Field, R.A. Witt, and C.A. Michaluk, Mater. Sci. Forum 408–412, 113 (2002).

    Google Scholar 

  14. C.A. Michaluk, L.E. Huber, Jr., M.N. Kawchak, and J.D. Maguire, U.S. patent 6,893,513 B2 (May 2005).

  15. B.A. Prusakov, I.A. Lipyanko, and B.A. Kruglov, Met. Sci. Heat Treatment 36, 67 (1994).

    Article  Google Scholar 

  16. J.P. Suni, H. Weiland, and R.T. Shuey, Mater. Sci. Forum 408–412, 259 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Field, D.P., Yanke, J.M., Mcgowan, E.V. et al. Microstructural development in asymmetric processing of tantalum plate. J. Electron. Mater. 34, 1521–1525 (2005). https://doi.org/10.1007/s11664-005-0159-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0159-5

Key words

Navigation