Skip to main content
Log in

Enhanced gettering of iron impurities in bulk silicon by using external direct current electric field

  • Letter
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Iron impurities in bulk silicon are found to getter efficiently at the polysilicon layer by an electric field during isothermal annealing. Experimental results show that iron concentration at the polysilicon layer increases to the level that becomes detectable by total reflection x-ray fluorescence (TXRF) spectroscopy. The improved gettering efficiency for iron is attributed mainly to the directional drift of ionic iron interstitials toward the polysilicon gettering sites, under the influence of the applied potential gradient, thus presenting a more effective method for reducing the iron content in silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.N. Hall and J.H. Racette, J. Appl. Phys. 35, 379 (1964).

    Article  CAS  Google Scholar 

  2. E.R. Weber, Appl. Phys. A: Solids Surf. 30, 1 (1983).

    Article  Google Scholar 

  3. K. Honda, A. Ohsawa, and N. Toyokura, Appl. Phys. Lett. 46, 582 (1985).

    Article  CAS  Google Scholar 

  4. H. Wendt, H. Cerva, V. Lehmann, and W. Pamler, J. Appl. Phys. 65, 2402 (1989).

    Article  CAS  Google Scholar 

  5. A.G. Cullis and L.E. Katz, Phil. Mag. 30, 1419 (1974).

    CAS  Google Scholar 

  6. P.D. Augustus, J. Knights, and L.W. Kennedy, J. Microsc. 118, 315 (1980).

    CAS  Google Scholar 

  7. F. Shimura and H.R. Huff: VLSI Handbook (New York: Academic Press, 1985), pp. 191–193.

    Google Scholar 

  8. T.Y. Tan, E.E. Gardner, and W.K. Tice, Appl. Phys. Lett. 30, 175 (1977).

    Article  CAS  Google Scholar 

  9. E.G. Colas and E.R. Weber, Appl. Phys. Lett. 48, 1371 (1986).

    Article  CAS  Google Scholar 

  10. M. Aoki, A. Hara, and A. Ohsawa, J. Appl. Phys. 72, 895 (1992).

    Article  CAS  Google Scholar 

  11. M. Aoki, T. Itakura, and N. Sasaki, Appl. Phys. Lett. 66, 2709 (1995).

    Article  CAS  Google Scholar 

  12. S. Ogushi, S. Sadamitsu, K. Marsden, Y. Koike, and M. Sano, Jpn. J. Appl. Phys. 36, 9901 (1997).

    Article  Google Scholar 

  13. H. Hieslmair, A.A. Istratov, S.A. McHugo, C. Flink, T. Heiser, and E.R. Weber, Appl. Phys. Lett. 72, 1460 (1998).

    Article  CAS  Google Scholar 

  14. J.L. Benton, P.A. Stolk, D.J. Eaglesham, D.C. Jacobson, J.Y. Cheng, J.M. Poate, N.T. Ha, T.E. Haynes, and S.M. Myers, J. Appl. Phys. 80 3275 (1996).

    Article  CAS  Google Scholar 

  15. S.A. Mchugo, R.J. McDonald, A.R. Smith, D.L. Hurley, and E.R. Weber, Appl. Phys. Lett. 73, 1424 (1998).

    Article  CAS  Google Scholar 

  16. O. Kononchuk, R.A. Brown, Z. Radzimski, G.A. Rozgonyi, and F. Gonzalez, Appl. Phys. Lett. 69, 4203 (1996).

    Article  CAS  Google Scholar 

  17. R.A. Brown, O. Kononchuk, G.A. Rozgonyi, S. Koveshnikov, A.P. Knights, P.J. Simpson, and F. Gonzalez, J. Appl. Phys. 84, 2459 (1998).

    Article  CAS  Google Scholar 

  18. S.V. Koveshnikov. and G.A. Rozgonyi, J. Appl. Phys. 84, 3078 (1998).

    Article  CAS  Google Scholar 

  19. A. Kvit, R.A. Yankov, G. Duscher, G.A. Rozgonyi, and J.M. Glasko, Appl. Phys. Lett. 83, 1367 (2003).

    Article  CAS  Google Scholar 

  20. M. Aoki, and A. Hara, J. Appl. Phys. 74, 1440 (1993).

    Article  CAS  Google Scholar 

  21. S.A. McHugo, E.R. Weber, M. Mizuno, and F.G. Kirscht, Appl. Phys. Lett. 66, 2840 (1995).

    Article  CAS  Google Scholar 

  22. P. Zhang, H. Väinölä, A.A. Istratov, and E.R. Weber, Appl. Phys. Lett. 83, 4324 (2003).

    Article  CAS  Google Scholar 

  23. P.A. Stolk, J.L. Benton, D.J. Eaglesham, D.C. Jacobson, J.Y. Cheng, J.M. Poate, T.E. Haynes, and S.M. Myers, Appl. Phys. Lett. 68, 51 (1996).

    Article  CAS  Google Scholar 

  24. I. Zinman and S. Karmiel, U.S. patent 5,770,000 (1998).

  25. W.P. Lee, E.P. Teh, H.K. Yow, C.L. Choong, and T.Y. Tou, Electrochem Solid State, 7, G299 (2004).

  26. H.H. Woodbury and G.W. Ludwig, Phys. Rev. 117, 102 (1960).

    Article  CAS  Google Scholar 

  27. Y.H. Lee, R.L. Kleinhenz, and J.W. Corbett, Appl. Phys. Lett. 31, 142 (1977).

    Article  CAS  Google Scholar 

  28. L.C. Kimerling and J.L. Benton, Physica B 116, 297 (1983).

    Article  CAS  Google Scholar 

  29. G. Zoth and W. Bergholz, J. Appl. Phys. 67, 6764 (1990).

    Article  CAS  Google Scholar 

  30. K. Graff and H. Pieper, J. Electrochem. Soc. 128, 660 (1981).

    Article  Google Scholar 

  31. W. Wijaranakula, J. Electrochem. Soc. 140, 275 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, W.P., Teh, E.P., Yow, H.K. et al. Enhanced gettering of iron impurities in bulk silicon by using external direct current electric field. J. Electron. Mater. 34, L25–L29 (2005). https://doi.org/10.1007/s11664-005-0101-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0101-x

Key words

Navigation