Skip to main content
Log in

Optical and electrical characterization of (Ga,Mn)N/InGaN multiquantum well light-emitting diodes

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

(Ga,Mn)/N/InGaN multiquantum well (MQW) diodes were grown by molecular beam epitaxy (MBE). The current-voltage characteristics of the diodes show the presence of a parasitic junction between the (Ga,Mn)N and the n-GaN in the top contact layer due to the low conductivity of the former layer. Both the (Ga,Mn)N/InGaN diodes and control samples without Mn doping show no or very low (up to 10% at the lowest temperatures) optical (spin) polarization at zero field or 5 T, respectively. The observed polarization is shown to correspond to the intrinsic optical polarization of the InGaN MQW, due to population distribution between spin sublevels at low temperature, as separately studied by resonant optical excitation with a photon energy lower than the bandgap of both the GaN and (Ga,Mn)N. This indicates efficient losses in the studied structures of any spin polarization generated by optical spin orientation or electrical spin injection. The observed vanishing spin injection efficiency of the spin light-emitting diode (LED) is tentatively attributed to spin losses during the energy relaxation process to the ground state of the excitons giving rise to the light emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.L. Reed, N.A. El-Masry, H. Stadelmaier, M.E. Ritums, N.J. Reed, C.A. Parker, J.C. Roberts, and S.M. Bedair, Appl. Phys. Lett. 79, 3473 (2001).

    Article  CAS  Google Scholar 

  2. N. Theodoropoulou, A.F. Hebard, M.E. Overberg, C.R. Abernathy, S.J. Pearton, S.N.G. Chu, and R.G. Wilson, Appl. Phys. Lett. 78, 3475 (2001).

    Article  CAS  Google Scholar 

  3. S. Sonoda, S. Shimizu, T. Sasaki, Y. Yamamoto, and H. Hori, J. Cryst. Growth 237–239 1358 (2002).

    Article  Google Scholar 

  4. T. Sasaki, S. Sonoda, Y. Yamamoto, K. Suga, S. Shimizu, K. Kindo, and H. Hori, J. Appl. Phys. 91 7911 (2002).

    Article  CAS  Google Scholar 

  5. G.T. Thaler, M.E. Overberg, B. Gila, R. Frazier, C.R. Abernathy, S.J. Pearton, J.S. Lee, S.Y. Lee, Y.D. Park, Z.G. Khim, J. Kim, and F. Ren, Appl. Phys. Lett. 80 3964 (2002).

    Article  CAS  Google Scholar 

  6. Y. Park, H.-J. Lee, Y.C. Cho, S.-Y. Jeong, C.R. Cho, and S. Cho, Appl. Phys. Lett. 80, 4187 (2002).

    Article  CAS  Google Scholar 

  7. M. Hashimoto, Y.-K. Zhou, M. Kanamura, and H. Asahi, Solid State Commun. 122, 37 (2002).

    Article  CAS  Google Scholar 

  8. M.E. Overberg, C.R. Abernathy, S.J. Pearton, N.A. Theodoropoulou, K.T. McCarthy, and A.F. Hebard, Appl. Phys. Lett. 79, 1312 (2001).

    Article  CAS  Google Scholar 

  9. K.H. Kim, K.J. Lee, D.J. Kim, H.J. Kim, Y.E. Ihm, D. Djayaprawira, M. Takahashi, C.S. Kim, C.G. Kim, and S.H. Yoo, Appl. Phys. Lett. 82 1775 (2003).

    Article  CAS  Google Scholar 

  10. S. Dhar, O. Brandt, A. Trampert, L. Daweriz, K.J. Friendland, K.H. Ploog, J. Keller, B. Beschoten and G. Guntherodt, Appl. Phys. Lett. 82 2077 (2003).

    Article  CAS  Google Scholar 

  11. S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler, D.P. Norton, N. Theodorpoulou, A.F. Hebard, Y.D. Park, F. Ren, J. Kim, and L.A. Boatner, J. Appl. Phys. 93 1 (2003).

    Article  CAS  Google Scholar 

  12. S.J. Pearton, C.R. Abernathy, D.P. Norton, A.F. Hebard, Y.D. Park, L.A. Boatner, and J.D. Budai, Mater. Sci. Eng. R 40 137 (2003).

    Google Scholar 

  13. S.J. Pearton, Y.D. Park, C.R. Abernathy, M.E. Overberg, G.T. Thaler, J. Kim, and F. Ren, J. Electron. Mater. 32 288 (2003).

    Article  CAS  Google Scholar 

  14. I.A. Buyanova, G.R. Rudko, W.M. Chen, A.A. Toropov, S.V. Sorokin, S.V. Ivanov, and P.S. Kop’ev, Appl. Phys. Lett. 82 1700 (2003).

    Article  CAS  Google Scholar 

  15. I.A. Buyanova, I.G. Ivanov, B. Monemar, W.M. Chen, A.A. Toropov, Y.V. Terent’ev, S.V. Sorokin, A.V. Lebedev, S.V. Ivanov, and P.S. Kop’ev, Appl. Phys. Lett. 81 2196 (2002).

    Article  CAS  Google Scholar 

  16. M. Oestreich, J. Mübner, D. Hägele, P.J. Klar, W. Heimbrodt, W.W. Rühle, D.E. Ashenford, and B. Lunn, Appl. Phys. Lett. 74 (1999) 1251.

    Article  CAS  Google Scholar 

  17. Y. Ohno, D.K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D.D. Awschalom, Nature 402 (1999) 790.

    Article  CAS  Google Scholar 

  18. R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L.W. Molenkamp, Nature 402 (1999) 787.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buyanova, I.A., Izadifard, M., Storasta, L. et al. Optical and electrical characterization of (Ga,Mn)N/InGaN multiquantum well light-emitting diodes. J. Electron. Mater. 33, 467–471 (2004). https://doi.org/10.1007/s11664-004-0204-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-004-0204-9

Key words

Navigation