Skip to main content
Log in

Electrical and magnetoresistance properties of composites consisting of iron nanoparticles within the hexaferrites

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nanocomposites containing Fe or FeCo (Fe-rich) dispersed in hexaferrites (M, W, or Y phase) are realized by the heterogeneous solid-gas reduction under H2 + N2. Transmission electron microscopy (TEM) studies show that metal nanoparticles precipitate coherently as thin flakes along the a-b planes of the hexaferrite lattice above the characteristic reduction temperature, TR >375°C. The electrical resistivity measurements reveal that the charge transport mechanism in the composites is by tunneling, whereas samples having higher fractions of the alloy particles show metallic behavior. Controlled reduction at TR leads to apparent insulator-metal changeover in the ρ versus T plot. This changeover persists even in the presence of a high magnetic field (7 T) and is ascribed to the percolation of metal particles caused by the difference in the coefficient of thermal expansion between the constituents. In the insulator regime, negative magnetoresistance (MR) of ∼5–9% is observed at 25°C. Further, ρ-T curves by the two-probe method exhibit hysteretic behavior caused by large inhomogeneity in the distribution of metal content and the time-dependent charge accumulation (Coulomb blockade) at the metal granules for these composites. They also exhibit nonlinearity in the current-voltage (I-V) characteristics with the nonlinearity coefficient ranging from 1.2 to 1.4 at different temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Cruezet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).

    Article  CAS  Google Scholar 

  2. A.E. Berkowitz, J.R. Mitchell, M.J. Carey, A.P. Young, S. Zhang, F.E. Spada, F.T. Parker, A. Hutten, and G. Thomas, Phys. Rev. Lett. 68, 3745 (1992).

    Article  CAS  Google Scholar 

  3. J.Q. Xiao, J.S. Jiang, and C.L. Chien, Phys. Rev. Lett. 68, 3749 (1988).

    Article  Google Scholar 

  4. H.Y. Jwang, W.-W. Cheong, N.P. Ong, and B. Batlogg, Phys. Rev. Lett. 77, 2041 (1996).

    Article  Google Scholar 

  5. R.D. Sánchez, J. Rivas, C. Vázquez-Vázquez, M.A. López-Qunitela, M.T. Causa, M. Tovar, and S. Oseroff, Appl. Phys. Lett. 68, 134 (1996).

    Article  Google Scholar 

  6. A. Gupta, G.Q. Gong, G. Xiao, P.R. Duncombe, P. Lecoeur, P. Trouilloud, Y.Y. Wang, V.P. Dravid, and J.Z. Sun, Phys. Rev. B54, 15629 (1996).

    Google Scholar 

  7. J.I. Gittleman, Y. Goldstein, and S. Bozowski, Phys. Rev. B 5, 3609 (1972).

    Article  Google Scholar 

  8. J.S. Helman and B. Abeles, Phys. Rev. Lett. 37, 1429 (1976).

    Article  CAS  Google Scholar 

  9. S. Barzilai, Y. Goldstein, I. Balberg, and J.S. Helman, Phys. Rev. B 23, 1809 (1981).

    Article  CAS  Google Scholar 

  10. S. Maekawa and U. Gäfvert, IEEE Trans. Magn. MAG-18, 707 (1982).

    Article  CAS  Google Scholar 

  11. S. Honda, T. Okada, and M. Nawate, Phys. Rev. B 56, 14566 (1997).

    Article  CAS  Google Scholar 

  12. C. Sudakar, G.N. Subbanna, and T.R.N. Kutty, J. Appl. Phys. 94, 6030 (2003).

    Article  CAS  Google Scholar 

  13. C. Sudakar, G.N. Subbanna, and T.R.N. Kutty, J. Magn. Magn. Mater. 263, 253 (2003).

    Article  CAS  Google Scholar 

  14. A.I. Vogel, Textbook of Quantitative Chemical Analysis, 5th ed. (Singapore: Longman Publishers, 1991), p. 376–382.

    Google Scholar 

  15. J.S. Helman and B. Abeles, Phys. Rev. Lett. 37, 1429 (1976).

    Article  CAS  Google Scholar 

  16. P. Sheng, B. Abeles, and Y. Arie, Phys. Rev. Lett. 31, 44 (1973).

    Article  CAS  Google Scholar 

  17. A. Hernando, A. Cebollada, J.L. Menéndez, and F. Briones, J. Magn. Magn. Mater. 262, 1 (2003).

    Article  CAS  Google Scholar 

  18. P.C. Dorsey, S.B. Qadri, J.L. Feldman, J.S. Horwitz, P. Lubitz, D.B. Chrisey, and J.B. Ings, J. Appl. Phys. 79, 3517 (1996).

    Article  CAS  Google Scholar 

  19. P. Hernández-Gómez, C. de Francisco, V.A.M. Brabers, and J.H.J. Dalderop, J. Appl. Phys. 87, 3576 (2000).

    Article  Google Scholar 

  20. D.R. Lide ed., CRC Handbook of Chemistry and Physics, 80th ed. (Boca Raton, FL: CRC Press, 1999), pp. 12–100 to 105 & 12–160.

    Google Scholar 

  21. T. Zhu and Y.J. Wang, Phys. Rev. B. 60, 11918 (1999).

    Article  CAS  Google Scholar 

  22. P. Chen, D.Y. Xing, Y.W. Du, T.M. Zhu, and D. Feng, Phys. Rev. Lett. 87, 107202 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sudakar, C., Kutty, T.R.N. Electrical and magnetoresistance properties of composites consisting of iron nanoparticles within the hexaferrites. J. Electron. Mater. 33, 1280–1288 (2004). https://doi.org/10.1007/s11664-004-0154-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-004-0154-2

Key words

Navigation