Skip to main content
Log in

Effects of excess Bi concentration, buffered Bi2O3 layer, and Ta doping on the orientation and ferroelectricity of chemical-solution-deposited Bi3.25La0.75Ti3O12 films

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Effects of excess Bi concentration, buffered Bi2O3 layer, and Ta doping on the orientation and ferroelectricity of chemical-solution-deposited (CSD) Bi3.25La0.75Ti3O12 (BLT) films on Pt/SiO2/Si(100) were studied. The optimum concentration of excess Bi added to the BLT films to achieve a larger remanent polarization (2Pr) was 10 mol.%. The buffered Bi2O3 layers could reduce the temperature for c-axis-oriented growth of BLT films from 850°C to 700°C. However, two-step annealing, i.e., first annealed at 650°C and then annealed at a temperature of 700–850°C, could effectively suppress the c-axis-oriented growth and thus improve the 2Pr of BLT films. The improvement of the 2Pr of BLT films can be explained in terms of the large polarization along the a-axis orientation and buffered Bi2O3 layers, which compensate the BLT films for Bi evaporation during annealing. The Ta doping can induce two contrary effects on the 2Pr of BLT films. For the (Bi3.25La0.75)(Ti3−xTax)O12 (BLTTx) films with x=0.005, the effect of a decrease of oxygen vacancies would be dominant, resulting in the improvement of 2Pr. Because the Ta concentration (x) in the BLTTx films exceeds 0.01, the effect of a decrease of grain size would become dominant, resulting in the degradation of 2Pr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.A. Paz de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, and J.F. Scott, Nature 374, 627 (1995).

    Article  Google Scholar 

  2. B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, and W. Jo, Nature 401, 682 (1999).

    Article  CAS  Google Scholar 

  3. H.N. Lee and D. Hesse, Appl. Phys. Lett. 80, 1040 (2002).

    Article  CAS  Google Scholar 

  4. T. Watanabe, H. Funakubo, M. Osada, Y. Noguchi, and M. Miyayama, Appl. Phys. Lett. 80, 100 (2002).

    Article  CAS  Google Scholar 

  5. D. Wu, A. Li, T. Zhu, Z. Liu, and N. Ming, J. Appl. Phys. 88, 5941 (2000).

    Article  CAS  Google Scholar 

  6. U. Chon, G.C. Yi, and H.M. Jang, Appl. Phys. Lett. 78, 658 (2001).

    Article  CAS  Google Scholar 

  7. U. Chon, H.M. Jang, S.H. Lee, and G.C. Yi, J. Mater. Res. 16, 3124 (2001).

    CAS  Google Scholar 

  8. D. Wu, A. Li, T. Zhu, Z. Li, Z. Liu, and N. Ming, J. Mater. Res. 16, 1325 (2001).

    CAS  Google Scholar 

  9. W.T. Lin, T.W. Chiu, H.H. Yu, J.L. Lin, and M.S. Lin, J. Vac. Sci. Technol. A 21, 787 (2003).

    Article  CAS  Google Scholar 

  10. R. Dinu, M. Dinescu, J.D. Pedarnig, R.A. Gunasekaran, D. Bauerle, S. Bauer-Gogonea, and S. Bauer, Appl. Phys A 69, 55 (1999).

    Article  Google Scholar 

  11. W.C. Shin and S.G. Yoon, Appl. Phys. Lett. 79, 1519 (2001).

    Article  CAS  Google Scholar 

  12. J.T. Dawley, R. Radspinner, B.J.J. Zelinski, and D.R. Uhlmann, J. Sol-Gel Sci. Technol. 20, 85 (2001).

    Article  CAS  Google Scholar 

  13. D. Bao, T.W. Chiu, N. Wakiya, K. Shinozaki, and N. Mizutani, J. Appl. Phys. 93, 497 (2003)

    Article  CAS  Google Scholar 

  14. S.E. Cumnins and L.E. Cross, J. Appl. Phys. 39, 2268 (1968).

    Article  Google Scholar 

  15. X. Du and I.W. Chen, J. Am. Ceram. Soc. 81, 3253 (1998).

    CAS  Google Scholar 

  16. Y. Shimakawa, Y. Tauchi, H. Asano, T. Kamiyama, F. Izumi, and Z. Hiroi, Appl. Phys. Lett. 79, 2791 (2001).

    Article  CAS  Google Scholar 

  17. Y.M. Sun, Y.C. Chen, J.Y. Gan, and J.C. Hwang, Appl. Phys. Lett. 81, 3221 (2002).

    Article  CAS  Google Scholar 

  18. H.N. Lee, D. Hesse, N. Zakharov, and U. Gosele, Science 296, 2006 (2002).

    Article  CAS  Google Scholar 

  19. Y. Noguchi, I. Miwa, Y. Goshima, and Miyayama, Jpn. J. Appl. Phys., Part 2 39, L1259 (2000)

  20. Y. Noguchi and M. Miyayama, Appl. Phys. Lett. 78, 1903 (2001).

    Article  CAS  Google Scholar 

  21. J.K. Kim, S.S. Kim, and J. Kim, J. Mater. Res. 18, 1884 (2003)

    CAS  Google Scholar 

  22. X. Wang and H. Ishiwara, Appl. Phys. Lett. 82, 2479 (2003).

    Article  CAS  Google Scholar 

  23. R.D. Shannon, Acta Cryst. A32, 751 (1976).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, JL., Chang, TL. & Lin, WT. Effects of excess Bi concentration, buffered Bi2O3 layer, and Ta doping on the orientation and ferroelectricity of chemical-solution-deposited Bi3.25La0.75Ti3O12 films. J. Electron. Mater. 33, 1248–1252 (2004). https://doi.org/10.1007/s11664-004-0129-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-004-0129-3

Key words

Navigation