Skip to main content
Log in

Long wavelength infrared, molecular beam epitaxy, HgCdTe-on-Si diode performance

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the past several years, we have made significant progress in the growth of CdTe buffer layers on Si wafers using molecular beam epitaxy (MBE) as well as the growth of HgCdTe onto this substrate as an alternative to the growth of HgCdTe on bulk CdZnTe wafers. These developments have focused primarily on mid-wavelength infrared (MWIR) HgCdTe and have led to successful demonstrations of high-performance 1024×1024 focal plane arrays (FPAs) using Rockwell Scientific’s double-layer planar heterostructure (DLPH) architecture. We are currently attempting to extend the HgCdTe-on-Si technology to the long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) regimes. This is made difficult because the large lattice-parameter mismatch between Si and CdTe/HgCdTe results in a high density of threading dislocations (typically, >5E6 cm−2), and these dislocations act as conductive pathways for tunneling currents that reduce the RoA and increase the dark current of the diodes. To assess the current state of the LWIR art, we fabricated a set of test diodes from LWIR HgCdTe grown on Si. Silicon wafers with either CdTe or CdSeTe buffer layers were used. Test results at both 78 K and 40 K are presented and discussed in terms of threading dislocation density. Diode characteristics are compared with LWIR HgCdTe grown on bulk CdZnTe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.K. Dhar, P.R. Boyd, P.M. Armirtharaj, J.H. Dinan, and J.D. Benson, Proc. SPIE 2228, 44 (1994).

    Article  CAS  Google Scholar 

  2. T.H. Myers, Y. Lo, R.N. Bicknell, and J.F. Schetzina, Appl. Phys. Lett. 42, 247 (1983).

    Article  CAS  Google Scholar 

  3. P.S. Wijewarnasuriya et al., J. Electron. Mater. 27, 546 (1998).

    Article  CAS  Google Scholar 

  4. N.K. Dhar, M. Zandian, J.G. Pasko, J.M. Arias, and J.H. Dinan, Appl. Phys Lett. 70, 1730 (1997).

    Article  CAS  Google Scholar 

  5. T.J. de Lyon, D. Rajavel, S.M. Johnson, and C.A. Cockrum, Appl. Phys Lett. 66, 2119 (1995).

    Article  Google Scholar 

  6. N.K. Dhar, P.R. Boyd, M. Martinka, J.H. Dinan, L.A. Almeida, and N. Goldsman, J. Electron. Mater. 29, 748 (2000).

    CAS  Google Scholar 

  7. P.J. Taylor, W.A. Jesser, M. Martinka, K.M. Singley, J.H. Dinan, R.T. Lareau, M.C. Wood, and W.W. Clark III, J. Vac. Sci. Technol. A 17, 1153 (1999).

    Article  CAS  Google Scholar 

  8. N.K. Dhar, C.E.C. Wood, A. Gray, H.Y. Wei, L. Salamanca-Riba, and J.H. Dinan, J. Vac. Sci. Technol. B 14, 2366 (1996).

    Article  CAS  Google Scholar 

  9. Y.P. Chen, G. Brill, and N.K. Dhar, J. Cryst. Growth 252, 270 (2003).

    Article  CAS  Google Scholar 

  10. J. Bajaj, J.M. Arias, M. Zandian, D.D. Edwall, J.G. Pasko, L.O. Bubulac, and L.J. Kozlowski, J. Electron. Mater. 25, 1394 (1996).

    CAS  Google Scholar 

  11. P.S. Wijewarnasuriya, M. Zandian, D.B. Young, J. Waldrop, D.D. Edwall, W.V. McLevige, D. Lee, J. Arias, and A.I. D’Souza, J. Electron. Mater. 28, 649 (1999).

    Article  CAS  Google Scholar 

  12. N.H. Karam, V. Haven, S.M. Vernon, N. El-Masry, E.H. Lingunis, and N. Haegal, J. Cryst. Growth 107, 129 (1991).

    Article  CAS  Google Scholar 

  13. X.G. Zhang, P. Li, G. Zhao, D.W. Parent, F.C. Jain, and J.E. Ayers, J. Electron. Mater. 27, 1248 (1998).

    Article  CAS  Google Scholar 

  14. X.G. Zhang, A. Rodriguez, P. Li, F.C. Jain, and J.E. Ayers, Appl. Phys Lett. 91, 3912 (2002).

    CAS  Google Scholar 

  15. X.G. Zhang, A. Rodriguez, X. Wang, P. Li, F.C. Jain, and J.E. Ayers, Appl. Phys Lett. 77, 2524 (2002).

    Article  Google Scholar 

  16. K. Jowikowski and A. Rogalski, J. Electron. Mater. 29, 736 (2000).

    CAS  Google Scholar 

  17. R.S. List, J. Electron. Mater. 22, 1017 (1993).

    CAS  Google Scholar 

  18. S.M. Johnson, D.R. Rhiger, J.P. Rosenbeck, J.M. Peterson, S.M. Taylor, and M.E. Boyd, J. Vac. Sci. Technol. B 10 1499 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carmody, M., Pasko, J.G., Edwall, D. et al. Long wavelength infrared, molecular beam epitaxy, HgCdTe-on-Si diode performance. J. Electron. Mater. 33, 531–537 (2004). https://doi.org/10.1007/s11664-004-0042-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-004-0042-9

Key words

Navigation