Skip to main content
Log in

Heterogeneous silicon integration by ultra-high vacuum wafer bonding

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Heterogeneous integration of technologically important materials, such as SiC/Si, GaN/Si, Ge/Si, Si/nano-Si/Si, SiC-on-insulator (SiCOI), and ZrO2/SiO2/Si, was successfully made by ultra-high vacuum (UHV) wafer bonding. A unique, UHV bonding unit, especially designed to control interface structure, chemistry, and crystallographic orientation within narrow limits, was used to produce homophase and heterophase planar interfaces. In-situ thin-film-deposition capability in conjunction with the wafer bonding offered even more flexibility for producing integrated artificial structures. Prebonding surface preparation was critically important for the formation of strong bonded interfaces. The substrate-surface morphology was examined by atomic-force microscopy (AFM) prior to bonding. In-situ Auger spectroscopy measurements of surface chemistry were invaluable predictors of bonding behaviors. Plasma processing very effectively cleaned the substrates, achieving a near-perfect interfacial bond at the atomic scale. The integrity of the bonded interfaces was studied in the light of their structural and chemical characteristics analyzed by high-resolution, analytical electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q.-Y. Tong and U. Gosele, Semiconductor Wafer Bonding: Science and Technology (New York: John Wiley & Sons, 1999), pp. 233–288.

    Google Scholar 

  2. D. Matthiesen, N. Newman, D. Norton, and D. Schlom, eds., Substrate Engineering—Paving the Way to Epitaxy, Materials Research Society Symposia, Vol. 587 (Pittsburgh, PA: MRS, 2000), pp. 1–228.

    Google Scholar 

  3. M.J. Kim, R.W. Carpenter, M.J. Cox, and J. Xu, J. Mater. Res. 15, 1008 (2000).

    CAS  Google Scholar 

  4. N.J. Zaluzec, B.J. Kestel, and D. Henriks, Microsc. Microanal. 3, 983 (1997).

    Google Scholar 

  5. M.J. Kim and R.W. Carpenter, J. Mater. Res. 5, 347 (1990).

    CAS  Google Scholar 

  6. K.D. Hobart, M.E. Twigg, F.J. Kub, and C.A. Desmond, Appl. Phys. Lett. 72, 1095 (1998).

    Article  CAS  Google Scholar 

  7. L. Canham, Nature 408, 411 (2000).

    Article  CAS  Google Scholar 

  8. W.P. Maszara, G. Goetz, A. Cavilia, and J.B. McKitterixk, J. Appl. Phys. 64, 4943 (1988).

    Article  CAS  Google Scholar 

  9. H.M. Liaw, R. Venugopal, J. Wan, R. Doyle, P.L. Fejes, and M.R. Melloch, Solid State Electron. 44, 685 (2000).

    Article  CAS  Google Scholar 

  10. W.S. Wong, A.B. Wengrow, Y. Cho, A. Salleo, N.J. Quitoriano, N.W. Cheung, and T. Sands, J. Electron. Mater. 28, 1409 (1999).

    Article  CAS  Google Scholar 

  11. M.K. Kelly, O. Ambacher, R. Dimitrov, R. Handschuh, and M. Stutzmann, Phys. Status Solidi A159, R3 (1997).

  12. G.D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys. 89, 5243 (2001).

    Article  CAS  Google Scholar 

  13. W.M. Skiff, R.W. Carpenter, and S.H. Lin, J. Appl. Phys. 64, 6328 (1988).

    Article  CAS  Google Scholar 

  14. J. Wong, D.A. Jefferson, T.G. Sparrow, J.M. Thomas, R.H. Milne, A. Howie, and E.F. Koch, Appl. Phys. Lett. 48, 65 (1986).

    Article  CAS  Google Scholar 

  15. D.W. McComb, Phys. Rev. B54, 7094 (1996).

    Google Scholar 

  16. C.C. Ahn and O. Krivanek, EELS Atlas (Warrendale, PA: Gatan Inc., 1983), p. 40.

    Google Scholar 

  17. H.K. Shin, D.J. Lockwood, and J.-M. Baribeau, Solid State Comm. 114, 505 (2000) and references therein.

    Article  CAS  Google Scholar 

  18. Z. Cheng, G. Taraschi, M.T. Currie, C.W. Leitz, M.L. Lee, A. Pitera, T.A. Langdo, J.L. Hoyt, D.A. Antoniadis, and E.A. Fitzgerald, J. Electron. Mater. 30, L37 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M.J., Carpenter, R.W. Heterogeneous silicon integration by ultra-high vacuum wafer bonding. J. Electron. Mater. 32, 849–854 (2003). https://doi.org/10.1007/s11664-003-0199-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-003-0199-7

Key words

Navigation