Skip to main content
Log in

Growth of the dilute magnetic semiconductor GaMnN by molecular-beam epitaxy

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Growth by molecular-beam epitaxy (MBE) of the dilute-magnetic alloy GaMnN is reported. The Mn concentration, as determined by Auger electron spectroscopy (AES), is found to be linear with increasing Mn-cell temperature up to ∼43at.%Mn. No second phases are observed for Mn levels below 9 at.%. The cubic-phase Mn4N is found to be the thermodynamically stable phase at the growth conditions used to produce GaMnN. Hysteresis in M versus H is observed in both GaMnN and GaMnN:C grown on both sapphire and metal-oxide chemical-vapor deposition (MOCVD) GaN at several growth temperatures. Magnetotransport results show the anomalous Hall effect, negative magnetoresistance, and magnetic hysteresis, indicating that Mn is incorporating into the GaN and forming the ferromagnetic-semiconductor GaMNN. Room-temperature hysteresis is obtained in magnetization measurements with an optimum Mn concentration of ∼3 at.%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Prinz and K. Hathaway, Phys. Today 48, 24 (1995).

    Google Scholar 

  2. D. DiVincenzo, Science 270, 255 (1995).

    Article  CAS  Google Scholar 

  3. G. Prinz, Science 282, 1660 (1998).

    Article  CAS  Google Scholar 

  4. D. Deutsch, Proc. R. Soc. London A 400, 97 (1985).

    Article  Google Scholar 

  5. B.T. Jonker, Y.D. Park, B.R. Bennett, H.D. Cheong, G. Kioseoglou, and A. Petrou, Phys. Rev. B 62, 8180 (2000).

    Article  CAS  Google Scholar 

  6. D.D. Awschalom and R.K. Kawakami, Nature 408, 923 (2000).

    Article  CAS  Google Scholar 

  7. M. Tanaka, J. Cryst. Growth 201/202, 660 (1999).

    Article  CAS  Google Scholar 

  8. B. Lee, T. Jungwirth, and A.H. MacDonald, Phys. Rev. B 61, 15606 (2000).

    Article  CAS  Google Scholar 

  9. T. Dietl, H. Ohno, F. Matsukara, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).

    Article  CAS  Google Scholar 

  10. H. Ohno, Science 281, 951 (1998).

    Article  CAS  Google Scholar 

  11. H. Munekata, A. Zaslavsky, P. Fumagalli, and R.J. Gambino, Appl. Phys. Lett. 63, 2929 (1993).

    Article  CAS  Google Scholar 

  12. F. Matukura, E. Abe, and H. Ohno, J. Appl. Phys. 87, 6442 (2000).

    Article  Google Scholar 

  13. M. Zajac, R. Doradzinski, J. Gosk, J. Szczytko, M. Lefeld-Sosnowska, M. Kaminska, A. Twardowski, M. Palczewska, E. Grzanka, and W. Gebicki, Appl. Phys. Lett. 78, 1276 (2001).

    Article  CAS  Google Scholar 

  14. W. Gebicki, J. Strzeszewski, G. Kamler, T. Szyszko, and S. Podsiadlo, Appl. Phys. Lett. 76, 3870 (2000).

    Article  CAS  Google Scholar 

  15. N. Theodoropoulou, K.P. Lee, M.E. Overberg, S.N.G. Chu, A.F. Hebard, C.R. Abrnathy, S.J. Pearton, and R.G. Wilson, J. Nanosci. Nanotech. 1, 101 (2001).

    Article  CAS  Google Scholar 

  16. M.L. Reed, M.K. Ritums, H.H. Stadelmaier, M.J. Reed, C.A. Parker, S.M. Bedair, and N.A. El-Masry, Mater. Lett. 51, 500 (2001).

    Article  CAS  Google Scholar 

  17. M.L. Reed, N.A. El-Masry, H.H. Stadelmaier, M.E. Ritums, N.J. Reed, C.A. Parker, J.C. Roberts, and S.M. Bedair, Appl. Phys. Lett. 79, 3473 (2001).

    Article  CAS  Google Scholar 

  18. N.A. Theodoropoulou, A.F. Hebard, M.E. Overberg, C.R. Abernathy, S.J. Pearton, S.N.G. Chu, and R.G. Wilson, Appl. Phys. Lett. 78, 3475 (2001).

    Article  CAS  Google Scholar 

  19. S. Sonoda, S. Shimizu, T. Sasaki, Y. Yamamoto, and H. Hori, J. Cryst. Growth 237–239, 1358 (2002).

    Article  Google Scholar 

  20. M.E. Overberg, C.R. Abernathy, S.J. Pearton, N. Theodoropoulou, K.T. McCarthy, and A.F. Hebard, Appl. Phys. Lett. 79, 1312 (2001).

    Article  CAS  Google Scholar 

  21. T. Sasaki, S. Sonoda, Y. Yamamoto, K. Suga, S. Shimizu, K. Kindo, and H. Hori, J. Appl. Phys. 91, 7911 (2002).

    Article  CAS  Google Scholar 

  22. G.T. Thaler et al., Appl. Phys. Lett. 80, 3964 (2002).

    Article  CAS  Google Scholar 

  23. C.R. Abernathy, J.D. MacKenzie, S.J. Pearton, and W.S. Hobson, Appl. Phys. Lett. 66, 1969 (1995).

    Article  CAS  Google Scholar 

  24. W. Schoenfeld, M.J. Antonell, and C.R. Abernathy, J. Cryst. Growth 188, 50 (1998).

    Article  CAS  Google Scholar 

  25. R.H. Crabtree, The Organometallic Chemistry of the Transition Metals, 3rd ed. (New York: Wiley, 2001).

    Google Scholar 

  26. A.F. Guillermet and G. Grimvall, Phys. Rev. B 40, 10582 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Overberg, M.E., Thaler, G.T., Abernathy, C.R. et al. Growth of the dilute magnetic semiconductor GaMnN by molecular-beam epitaxy. J. Electron. Mater. 32, 298–306 (2003). https://doi.org/10.1007/s11664-003-0148-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-003-0148-5

Key words

Navigation