Wide and narrow bandgap semiconductors for power electronics: A new valuation

Abstract

An advantage for some wide bandgap materials that is often overlooked is that the thermal coefficient of expansion (CTE) is better matched to the ceramics in use for electronic-packaging technology. The optimal choice for unipolar devices is GaN and the associated material system of GaN/AlGaN. The future optimal choice for bipolar devices at all power levels is C (diamond). New expressions, ɛ c=1.73×105 (EG)2.5 for direct-gap and ɛ c=2.38×105 (EG)2 for indirect-gap semiconductors, relating the critical-electric field for breakdown in abrupt junctions to the material bandgap energy, and associated new expressions for specific on-resistance in power semiconductor devices is shown to further support the use of wide bandgap materials. Some low-voltage, power-electronics applications are shown to benefit by the use of Ge, C, and GaSb.

This is a preview of subscription content, log in to check access.

Abbreviations

CTE:

Coefficient of thermal expansion (ppm/K or µm/m·K)

EG :

Bandgap energy (eV)

ɛ(x):

Electric field as a function of position (V/cm)

ɛ c :

Critical-electric field (V/cm)

ɛ:

Permittivity (F/cm)

ɛ:

Relative permittivity

mo :

Electron rest mass (kg)

mn :

Electron density-of-states effective mass (kg)

ml :

Longitudinal electron density-of-states effective mass (in mo)

mt :

Transverse electron density-of-states effective mass (in mo)

mp :

Hole density-of-states effective mass (kg)

mh :

Heavy valence-band hole density-of-states effective mass (in mo)

ml :

Light valence-band hole density-of-states effective mass (in mo)

μe :

Electron conduction mobility (cm2/V·s)

μh :

Hole-conduction mobility (cm2/V·s)

NB :

Impurity-density concentration (cm−3)

ni :

Intrinsic-carrier concentration (cm−3)

RONsp :

Specific on-resistance (Ω·cm2)

σT :

Thermal conductivity (W/m·K)

VB :

Breakdown voltage (V)

References

  1. 1.

    T.P. Chow and R. Tyagi, IEEE Trans. ED 41, 1481 (1994).

    Article  CAS  Google Scholar 

  2. 2.

    M. Bhatnagar and B.J. Baliga, IEEE Trans. ED 40, 645 (1993).

    Article  CAS  Google Scholar 

  3. 3.

    B.J. Baliga, IEEE EDL 10, 455 (1989).

    Google Scholar 

  4. 4.

    J.L. Hudgins, G.S. Simin, and M.A. Khan, IEEE PESC Rec. (Columbia, SC: University of South Carolina Press, 2002), pp. 1747–1752.

    Google Scholar 

  5. 5.

    L.I. Berger, Semiconductor Materials (New York: CRC Press, 1997), pp. 105–181.

    Google Scholar 

  6. 6.

    M. Levinshtein, S. Rumyantsev, and M. Shur, eds., Semiconductor Parameters, Vol. 1 (River Edge, NJ: World Scientific, 1996), pp. 1–211.

    Google Scholar 

  7. 7.

    C.M. Wolfe, N. Holonyak, and G.E. Stillman, Physical Properties of Semiconductors (Englewood Cliffs, NJ: Prentice Hall, 1989), p. 340.

    Google Scholar 

  8. 8.

    R.C. Marshall, J.W. Faust, and C.E. Ryan, eds., Silicon Carbide—1973 (Columbia, SC: University of South Carolina Press, 1974), pp. 286–296.

    Google Scholar 

  9. 9.

    B.J. Baliga, IEEE EDL 10, 455 (1989).

    Google Scholar 

  10. 10.

    V.A. Dmitriev, K.G. Irvine, C.H. Carter, N.I. Kuznetsov, and E.V. Kalinina, Appl. Phys. Lett. 68, 229 (1996).

    Article  CAS  Google Scholar 

  11. 11.

    M. Ruff, H. Mitlehener, and R. Helbig, IEEE Trans. ED 41, 1040 (1994).

    Article  CAS  Google Scholar 

  12. 12.

    T.P. Chow and R. Tyagi, IEEE Trans. ED 41, 1481 (1994).

    Article  CAS  Google Scholar 

  13. 13.

    M. Bhatnagar and B.J. Baliga, IEEE Trans. ED 40, 645 (1993).

    Article  CAS  Google Scholar 

  14. 14.

    A.Q. Huang and B. Zhang, IEEE Trans. ED 48, 2535 (2001).

    Article  CAS  Google Scholar 

  15. 15.

    M.E. Levinshtein, S.L. Rumyantsev, and M.S. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe (New York: John Wiley & Sons, Inc., 2001), pp. 1–185.

    Google Scholar 

  16. 16.

    J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).

    Article  CAS  Google Scholar 

  17. 17.

    V.Y. Davydov et al., Phys. Status Solidi B 230, R4 (2002).

  18. 18.

    S.M. Sze and G. Gibbons, Appl. Phys. Lett. 8, 111 (1966).

    Article  CAS  Google Scholar 

  19. 19.

    B.J. Baliga, J. Appl. Phys. 53, 1759 (1982).

    Article  CAS  Google Scholar 

  20. 20.

    M.A. Khan, J.N. Kuznia, J.M. Van Hove, N. Pan, and N. Carter, Appl. Phys. Lett. 60, 3027 (1992).

    Article  CAS  Google Scholar 

  21. 21.

    T. Sheppard, W.L. Pribble, D.T. Emerson, Z. Ring, R.P. Smith, S.T. Allen, and J.W. Palmour, Dev. Res. Conf. Dig. 37 (2000).

  22. 22.

    N.X. Nguyen, M. Micovic, W.-S. Wong, P. Hashimoto, L.M. McCray, P. Janke, and C. Nguyen, Electron. Lett. 36, 468 (2000).

    Article  CAS  Google Scholar 

  23. 23.

    Y.-F. Wu, D. Kapolnek, J.P. Ibbetson, P. Parikh, B.P. Keller, and U.K. Mishra, IEEE Trans. ED 48, 586 (2001).

    CAS  Article  Google Scholar 

  24. 24.

    W. Lu, J. Yang, M.A. Khan, and I. Adesida, IEEE Trans. ED 48, 581 (2001).

    Article  CAS  Google Scholar 

  25. 25.

    M.A. Khan, X. Hu, G. Simin, A. Lunev, J. Yang, R. Gaska, and M.S. Shur, IEEE ED Lett. 21, 63 (2000).

    Article  CAS  Google Scholar 

  26. 26.

    X. Hu, A. Koudymov, G. Simin, J. Yang, M.A. Khan, A. Tarakji, M.S. Shur, and R. Gaska, Appl. Phys. Lett. 79, 2832 (2001).

    Article  CAS  Google Scholar 

  27. 27.

    G. Simin, X. Hu, N. Ilinskaya, A. Kumar, A. Koudymov, J. Zhang, M.A. Khan, R. Gaska, and M.S. Shur, Electron. Lett. 36, 2043 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hudgins, J.L. Wide and narrow bandgap semiconductors for power electronics: A new valuation. Journal of Elec Materi 32, 471–477 (2003). https://doi.org/10.1007/s11664-003-0128-9

Download citation

Key words

  • Power electronics
  • wide bandgap
  • narrow bandgap
  • specific on-resistance
  • gallium nitride
  • diamond
  • critical-electric field